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Chapter 1

Connections On Vector
Bundles

1.1 Local Operators

In the following we consider vector bundles E → M and F → M over a
smooth manifold M .

Definition 1.1.1. For vector bundles E and F over a smooth manifold M
we call an R-linear map Φ : Γ(E) → Γ(F ) a local operator if whenever
s ∈ Γ(E) vanishes on an open set U ⊂ M , then Φ(s) ∈ Γ(F ) vanishes on U
also.

There is also a notion of a point operator which replaces U with a
single point p ∈ M . Before we look at the first example note that for a
trivial bundle M × R → M a section s of M × R is a map s(p) = (p, f(p))
for some function f :M → R. We thus have a one-to-one correspondence

{sections of M × R} ←→ {f | f :M → R}.

In particular the space of smooth sections Γ(M × R) can be identified with
C∞(M).

Example 1.1.2. The most basic example of a local operator is d
dx : C∞(R)→

C∞(R). Here we are identifying C∞(R) with Γ(R × R) as noted above. If
f(x) ≡ 0 on a neighborhood U ∋ p, then f ′(x) ≡ 0 on U .

Another great example of such an operator is the exterior derivative

d : Γ
(
ΛkT ∗M

)
→ Γ

(
Λk+1T ∗M

)
.

Proposition 1.1.3. If a map Φ : Γ(E)→ Γ(F ) is C∞(M)-linear, then it is
a local operator.
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Proof. Consider s ∈ Γ(E) such that s vanishes on an open set U ⊂ M . Let
p ∈ U and consider a smooth bump function f such that f(p) = 1 and the
support of f is contained in U . Now fs is a section of E and fs ≡ 0 on M .
Thus Φ(fs) = 0 and since Φ is C∞(M)-linear

Φ(fs) = fΦ(s) = 0.

At p we have Φ(s)(p) = 0 so Φ(s) ≡ 0 on U .

Theorem 1.1.4. If a map Φ : Γ(E) → Γ(F ) is a local operator, then for
each open subset U ⊂M there exists a unique linear map

Φ|U : Γ(U,E)→ Γ(U,F )

such that for any s ∈ Γ(E) we have that

Φ|U (s|U ) = Φ(s)|U .

Proof. Let s ∈ Γ(U,E) be a section and p ∈ U . Utilizing bump functions,
there exists a global section s such that s agrees with s in some neighborhood
W of p in U . Define

Φ|U (s)(p) := Φ(s)(p).

If σ ∈ Γ(E) is another global section with σ = s in W , then σ = s in
W . Now as Φ is a local operator we conclude that Φ(σ) = Φ(s) in W i.e.
Φ(σ)(p) = Φ(s)(p) which shows that Φ|U (s)(p) is independent of the choice
of s and so Φ|U is well-defined and unique. To show that Φ|U is smooth
we note that if s ∈ Γ(U,E) and s ∈ Γ(M,E) agree on a neighborhood
W ∋ p, then Φ|U (s) = Φ(s) on W and the left-hand side is smooth. Lastly
if s ∈ Γ(M,E) is a global section, then it is a global section of its restriction
s|U and so Φ|U (s|U )(p) = Φ(s)(p) for all p ∈ U . Thus Φ|U (s) = Φ(s).

Lemma 1.1.5. A fiber-preserving map φ : E → F that is linear on each
fiber is smooth if and only if the induced map Φ : Γ(E)→ Γ(F ) takes smooth
sections of E to smooth sections of F .

Proof. Suppose that φ : E → F is smooth. Then for a smooth section
s ∈ Γ(E) the composition Φ(s) = φ ◦ s is smooth as it’s a composition
of smooth maps. Conversely suppose that Φ takes smooth sections of E
to smooth sections of F . As usual we proceed locally. Fix p ∈ M and
consider a chart (U, x1, . . . , xn) at p over which E and F are both trivial. Let
e1, . . . , er ∈ Γ(E) be a frame for E over U and f1, . . . , fm ∈ Γ(F ) be a frame
for F over U . Now a point in E|U can be written as a linear combination∑
ajej . Suppose

φ ◦ ej =
∑
i

bijfi.
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Then

φ

∑
j

ajej

 =
∑
i,j

ajbijfi.

Taking local coordinates on E|U to be (x1, . . . , xn, a1, . . . , ar) we have

φ(x1, . . . , xn, a1, . . . , ar) =

x1, . . . , xn,∑
j

ajb1j , . . . ,
∑
j

ajbmj


which is smooth.

Lemma 1.1.6. A C∞(M)-linear map Φ : Γ(E)→ Γ(F ) is a point operator.

Proof. Suppose that s ∈ Γ(E) such that s vanishes at p ∈ M . Let U be an
open neighborhood of p over which E is trivial. Consider a frame e1, . . . , er
of E over U . We can write

s|U =
∑
i

aiei

where the ai’s are smooth functions on U . Since

0 = s|U (p) =
∑
i

ai(p)ei(p)

we conclude that ai(p) = 0 for every i. By Theorem 1.1.4 we know that Φ
restricts to a unique map Φ|U : Γ(U,E)→ Γ(U,F ) and so

Φ(s)(p) = Φ|U (s|U )(p)

= Φ|U (
∑
i

aiei)(p)

=

(∑
i

aiΦ|U (ei)

)
(p)

=
∑
i

ai(p)Φ|U (ei)(p)

= 0.

Lemma 1.1.7. If Φ : Γ(E)→ Γ(F ) is C∞(M)-linear, then for each p ∈M ,
there is a unique linear map Φp : Ep → Fp such that for all s ∈ Γ(E),

Φp(s(p)) = Φ(s)(p).
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Proof. Given v ∈ Ep choose any s ∈ Γ(E) such that s(p) = v and set

Φp(v) = Φ(s)(p) ∈ Fp.

This definition is independent of the choice of s since as we saw previously
Φ is a point operator. To show that Φp is linear suppose that v1, v2 ∈ Ep

and a1, a2 ∈ R. Let s1 and s2 be global sections of E with si(p) = vi. Now

Φp(a1v1 + a2v2) = Φ(a1s1 + a2s2)(p)

= a1Φ(s1)(p) + a2Φ(s2)(p)

= a1Φp(v1) + a2Φp(v2).

Theorem 1.1.8. There is a one-to-one correspondence between bundle maps
φ : E → F and C∞(M)-linear maps Φ : Γ(E)→ Γ(F ) given by φ 7→ Φ.

Proof. Suppose that α : Γ(E) → Γ(F ) is C∞(M)-linear. For each p ∈ M
there is a linear map Φp : Ep → Fp such that for any s ∈ Γ(E),

Φp(s(p)) = α(s)(p).

Define Φ : E → F by setting Φ(v) = Φp(v) if v ∈ Ep. Now for any s ∈ Γ(E)
and p ∈M

Φ̃(s)(p) = Φ(s(p)) = α(s)(p),

and so α = Φ̃ which proves surjectivity. Consider then bundle maps Φ,Ψ :
E → F with Φ̃ = Ψ̃. For any v ∈ Ep pick s ∈ Γ(E) with s(p) = e. Then

Φ(v) = Φ(s(p)) = Φ̃(s)(p) = Ψ̃(s)(p) = Ψ(s(p)) = Ψ(v),

i.e. Φ = Ψ.

1.2 Connections

The study of connections on bundles is usually called gauge theory. From a
mathematical standpoint, connections provide a way to differentiate sections
of a vector bundle. Specifically, a connection allows one to compare values
of sections at different points on the base manifold, giving rise to a covariant
derivative. This derivative is crucial in defining how a vector bundle behaves
under parallel transport, as well as in computing curvature, an intrinsic
measure of the bundle’s geometry.

Definition 1.2.1. Let E →M be a complex vector bundle. A connection
on E is an C-linear map

∇ : Γ(E)→ Γ(T ∗M ⊗ E)
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satisfying the Leibniz rule:

∇(fs) = df ⊗ s+ f∇s

for all f ∈ C∞(M) and s ∈ Γ(E).

Proposition 1.2.2. The set of all connections on a vector bundle E → M
is an affine space modeled on the vector space of End(E)-valued 1-forms.

Proof. Let ∇1,∇2 be two connections on E. Then for any f ∈ C∞(M) and
s ∈ Γ(E),

(∇1 −∇2)(fs) = ∇1(fs)−∇2(fs)

= (df ⊗ s+ f∇1s)− (df ⊗ s+ f∇2s)

= f(∇1s−∇2s),

that is, the difference ∇1 − ∇2 is C∞(M)-linear. Recall now that Lemma
1.1.7 states that such a map gives a unique map on fibers Ep → T ∗

pM⊗Ep, for
each p ∈M . That is, we obtain a map TpM → End(Ep) which implies that
∇1 −∇2 is an End(E)-valued 1-form. Furthermore, if A ∈ A1(M,End(E)),
then

(∇+A)(fs) = ∇(fs) +A(fs)

= df ⊗ s+ f∇s+ fA(s)

= df ⊗ s+ f(∇+A)(s).

Therefore ∇+A satisfies the Leibniz rule and is a connection.

Let U ⊂ M be an open set over which E is trivial, and let {e1, . . . , er}
be a local frame of E over U . Any section s ∈ Γ(U,E) can be written as
s =

∑r
j=1 s

jej for sj ∈ C∞(U). For X ∈ Γ(U, TM), the connection is given
by

∇Xs = ∇X

∑
j

sjej

 =
∑
j

dsj(X)ej +
∑
j

sj∇Xej .

For each i, j, there exist unique 1-forms ωi
j ∈ Ω1(U) such that

∇ej =
r∑

i=1

ωi
j ⊗ ei.

The r × r matrix ω = [ωi
j ] is called the connection matrix relative to the

frame {ei}. In this notation,

∇s = dsj ⊗ ej + sj∇ej
= dsj ⊗ ej + sjωi

j ⊗ ei
= dsj ⊗ ej + ωi

js
j ⊗ ei

= ds+ ωs,

7



where ds = (ds1, . . . , dsr)T and s = (s1, . . . , sr)T . Suppose now that {ei} and
{ẽi} are two local frames over U , related by ẽj =

∑
i a

i
jei, where a = [aij ] is a

smooth map U → GL(r,R). If ω and ω̃ are the connection matrices relative
to these frames, then

ω̃ = a−1ωa+ a−1da.

Under a change of frame, the connection matrix transforms inhomogeneously.
Given vector bundles E1, E2 → M with connections ∇1 and ∇2, there are
natural ways to define connections on associated bundles:

(i) Direct Sum: The direct sum E1 ⊕ E2 carries the connection

(∇1 ⊕∇2)(s1 ⊕ s2) := ∇1s1 ⊕∇2s2

for sections s1 ∈ Γ(E1), s2 ∈ Γ(E2).

(ii) Tensor Product: The tensor product E1 ⊗ E2 has the connection

∇(s1 ⊗ s2) := ∇1s1 ⊗ s2 + s1 ⊗∇2s2,

for s1 ∈ Γ(E1), s2 ∈ Γ(E2), extended by linearity.

(iii) Dual Bundle: If ∇ is a connection on E, the dual connection ∇∗ on
E∗ is defined by

d⟨λ, s⟩ = ⟨∇∗λ, s⟩+ ⟨λ,∇s⟩

for λ ∈ Γ(E∗), s ∈ Γ(E). Explicitly,

(∇∗λ)(s) := d(λ(s))− λ(∇s).

(iv) Hom Bundle: Given ∇1 on E1 and ∇2 on E2, the induced connection
∇Hom on Hom(E1, E2) is defined by

(∇Homφ)(s) := ∇2(φ(s))− φ(∇1s)

for φ ∈ Γ(Hom(E1, E2)) and s ∈ Γ(E1).

Up to this point M has been a real manifold and E a smooth complex
vector bundle. For now, we will consider a holomorphic vector bundle E
over a complex manifold X.

Proposition 1.2.3. Let E be a holomorphic vector bundle over a complex
manifold X. Then there exists a natural C-linear operator

∂̄E : Ap,q(E)→ Ap,q+1(E)

such that ∂̄2E = 0 and, for all f ∈ A0(X) and α ∈ Ap,q(E), the Leibniz rule
holds:

∂̄E(fα) = ∂̄f ∧ α+ f ∂̄Eα.
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Proof. Let U be a framed open set with a frame {e1, . . . , ek}. A section
α ∈ Ap,q(U,E) can be written as α =

∑
i α

i ⊗ ei for αi ∈ Ap,q(U). Set

∂̄Eα :=
∑
i

∂̄αi ⊗ ei.

To see that this expression is independent of the choice of local frame, let
{ẽ1, . . . , ẽk} be another frame over U , by the above construction, we obtain
an operator ∂̄′E . Now ei =

∑
j g

j
i ẽj for a transition matrix of holomorphic

functions [gji ], and

∂̄′Eα = ∂̄′E

∑
i,j

αi ⊗ gji ẽj


=
∑
i,j

∂̄(αigji )⊗ ẽj

=
∑
i,j

∂̄αi ⊗ gji ẽj

=
∑
i

∂̄αi ⊗ ei

= ∂̄Eα.

Hence we can extend this to all of Ap,q(E). By construction, this satisfies
∂̄2E = 0 and the Leibniz rule.

If ∇ is now any connection on E, then since A1(E) = A1,0(E)⊕A0,1(E),
we can decompose ∇ on E into its two components ∇ = ∇1,0 ⊕∇0,1. Note
that

∇0,1(fs) = ∂̄f ⊗ s+ f∇0,1s,

where ∂̄ : A0(E) → A0,1(E) is the operator we discussed above. Just as
we have compatible connections with metrics in the case of Riemannian
manifolds, there is an analog in the complex setting.

Definition 1.2.4. Let (E, h) be a Hermitian vector bundle. A connection
∇ on E is said to be compatible with the metric if, for all sections s, t of E,
we have

d(h(s, t)) = h(∇s, t) + h(s,∇t).

Theorem 1.2.5. Let E be a holomorphic vector bundle with a Hermitian
metric h. Then there exists a unique connection that is compatible with the
metric, and compatible with the holomorphic structure, in the sense that

∇0,1 = ∂̄.
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Proof. We will first prove uniqueness. This is a local problem so consider a
framed open set U with a holomorphic frame e = (e1, . . . , ek). Since E|U ∼=
U × Ck, the connection is then determined completely by the connection
1-forms ωj

i given by
∇ej =

∑
ωi
j ⊗ ei.

Since ∇ is compatible with h, we obtain

dh(ei, ej) = h (∇ei, ej) + h (ei,∇ej)

= h
(
ωk
i ⊗ ek, ej

)
+ h

(
ei, ω

k
j ⊗ ek

)
= ωk

i h(ek, ej) + h(ei, ek)ω̄
k
j .

Now, note that ∇ being compatible with the holomorphic structure means
that ∇s ∈ A1,0(U,E) for any holomorphic local section s. It follows that ωk

i

is of type (1, 0) so

∂h(ei, ej) = ωk
i h(ek, ej) and ∂̄h(ei, ej) = h(ei, ek)ω̄

k
j ,

or as matrices ∂h = ωTh and ∂̄h = hω̄. This yields that ω = h̄−1∂h̄ is a
unique solution to both equations. So ω is completely determined locally
by the Hermitian metric, and thus so is ∇. The argument also constructs
such a connection on each framed open set. Then by uniqueness, these local
connections glue to a connection on all of E and so we are done.

The unique connection described in Theorem 1.2.5 is called the Chern
connection. To conclude this section, we will now define holomorphic con-
nections which will play a key role in these notes.

Definition 1.2.6. Let E be a holomorphic vector bundle over a complex
manifold X and denote by E the locally free sheaf associated to E. A holo-
morphic connection on E is a C-linear map of sheaves

∇ : E → Ω1
X ⊗ E ,

such that ∇(fs) = ∂f ⊗ s + f∇s for any local holomorphic function f and
any local holomorphic section s.

1.3 Curvature

In the previous section, we introduced the notion of a connection as a gen-
eralization of the exterior differential to sections of vector bundles. While
the exterior derivative d satisfies d2 = 0, in general a connection ∇ does not
satisfy ∇2 = 0. The curvature of a connection quantifies this failure and
plays a key role in both differential and complex geometry.
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Let E → M be a smooth vector bundle over a manifold M , and let
∇ : A0(E)→ A1(E) be a connection. There is a canonical way to extend ∇
to E-valued k-forms,

∇ : Ak(E)→ Ak+1(E),

defined as follows: for a local k-form α ∈ Ak(M) and a local section s ∈ Γ(E),

∇(α⊗ s) := dα⊗ s+ (−1)kα ∧∇(s). (1.1)

This formula ensures that for k = 0 we recover the usual connection, since
∇(s) = df ⊗ s+ f∇(s) for any smooth function f .

More generally, for t ∈ Aℓ(E) and β ∈ Ak(M), the extension satisfies
the graded Leibniz rule:

∇(β ∧ t) = dβ ∧ t+ (−1)kβ ∧∇(t). (1.2)

Indeed, suppose t = α⊗ s with α ∈ Aℓ(M) and s ∈ Γ(E). Then,

∇(β ∧ t) = ∇((β ∧ α)⊗ s)
= d(β ∧ α)⊗ s+ (−1)k+ℓ(β ∧ α) ∧∇(s)

= (dβ ∧ α+ (−1)kβ ∧ dα)⊗ s+ (−1)kβ ∧
(
dα⊗ s+ (−1)ℓα ∧∇(s)

)
= dβ ∧ α⊗ s+ (−1)kβ ∧ dα⊗ s+ (−1)kβ ∧ dα⊗ s+ (−1)k+ℓβ ∧ α ∧∇(s)
= dβ ∧ α⊗ s+ (−1)kβ ∧∇(α⊗ s)
= dβ ∧ t+ (−1)kβ ∧∇(t).

Definition 1.3.1. The curvature of a connection∇ on E is the composition

F∇ := ∇ ◦∇ : A0(E)→ A2(E).

Explicitly, F∇ is a map that takes a section s ∈ Γ(E) and returns the
E-valued 2-form F∇(s) = ∇(∇(s)). In fact, the curvature can be interpreted
as a global section of A2(End(E)):

F∇ ∈ A2(M,End(E)).

This is justified by the following lemma:

Lemma 1.3.2. The curvature F∇ : A0(E) → A2(E) is A0(M)-linear, i.e.,
for any f ∈ C∞(M) and s ∈ Γ(E),

F∇(fs) = f · F∇(s).

Proof.

F∇(fs) = ∇(∇(fs))
= ∇(df ⊗ s+ f∇(s))
= d2f ⊗ s− df ∧∇(s) + df ∧∇(s) + f∇(∇(s))
= f · F∇(s).
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Locally, if E is trivial over U ⊂M and {e1, . . . , er} is a local frame, any
connection ∇ can be written as

∇ = d+A,

where A = [Ai
j ] is an r×r matrix of 1-forms. For a local section s =

∑
j s

jej
with ∇(s) = dsj ⊗ ej + sjAi

j ⊗ ei, we obtain:

F∇(s) = ∇(∇(s)) = (d+A)(ds+As)

= d2s+ d(As) +A ∧ ds+A ∧ (As)

= d(A)s+A ∧As,

so, as an End(E)-valued 2-form,

F∇ = dA+A ∧A. (1.3)

If A ∈ A1(M,End(E)) and ∇̃ = ∇ + A is another connection, then the
curvatures are related by:

Lemma 1.3.3. For any A ∈ A1(M,End(E)),

F∇+A = F∇ +∇(A) +A ∧A.

Proof. A calculation using the definition of the extended connection and the
graded Leibniz rule shows:

F∇+A(s) = (∇+A) ◦ (∇+A)(s)

= ∇(∇(s)) +∇(A(s)) +A(∇(s)) +A(A(s))

= F∇(s) +∇(A(s)) +A(∇(s)) +A(A(s))

= F∇(s) +∇(A)(s) +A ∧A(s).

Lemma 1.3.4 (Bianchi Identity). Let F∇ ∈ A2(M,End(E)) be the curva-
ture of a connection ∇. Then

∇(F∇) = 0 ∈ A3(M,End(E)).

Proof. The action of the extended connection ∇ on F∇ is

∇(F∇)(s) = ∇(F∇(s))− F∇(∇(s)).

But, since F∇ = ∇2, this is

∇(∇2(s))−∇2(∇(s)) = 0,

by associativity of composition and the definition of F∇.
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As we did with connections, we will now describe how to define curva-
ture on associated bundles: Let E1, E2 be vector bundles with connections
∇1,∇2, respectively.

(i) The curvature of E1 ⊕ E2 is

F∇ = F∇1 ⊕ F∇2 .

(ii) The curvature of E1 ⊗ E2 is

F∇ = F∇1 ⊗ 1 + 1⊗ F∇2 .

(iii) The curvature of the dual bundle E∗ satisfies

F∇∗ = −(F∇)
t.

(iv) For the pullback bundle f∗E under a smooth map f : M ′ → M , the
pullback connection f∗∇ satisfies

Ff∗∇ = f∗F∇.

When additional structure is present, such as a Hermitian metric or a holo-
morphic structure, the curvature obtains further properties:

Proposition 1.3.5.

(i) Let (E, h) be a Hermitian vector bundle and let ∇ be a connection
compatible with h. Then the curvature F∇ is skew-Hermitian in the
sense that for all sections si, sj,

h(F∇si, sj) + h(si, F∇sj) = 0.

In particular, F∇ is a section of A2(M,End(E, h)) consisting of skew-
Hermitian endomorphisms.

(ii) Suppose ∇ is compatible with the holomorphic structure, i.e., ∇0,1 = ∂̄.
Then the curvature F∇ has no (0, 2)-component, that is,

F∇ ∈ A2,0(X,End(E))⊕A1,1(X,End(E)).

(iii) If ∇ is the Chern connection (i.e., compatible with both the Hermi-
tian metric and the holomorphic structure), then F∇ is a real, skew-
Hermitian (1, 1)-form:

F∇ ∈ A1,1(X,End(E, h)), F̄ T
∇ = −F∇.

13



Proof. (i) We work locally in a holomorphic trivialization with a local
orthonormal frame {e1, . . . , ek} for (E, h). For such a frame, the metric
h(ei, ej) = δij is constant. The connection ∇ can be written as

∇ej =
k∑

i=1

ωi
j ⊗ ei,

where ω = [ωi
j ] is a matrix of 1-forms. The compatibility of ∇ with h

gives
dh(ei, ej) = h(∇ei, ej) + h(ei,∇ej).

Since dh(ei, ej) = 0, we compute

0 = h(ωk
i ⊗ ek, ej) + h(ei, ω

k
j ⊗ ek)

= ωj
i + ω̄i

j ,

so the connection matrix ω is skew-Hermitian: ωj
i = −ω̄i

j . The curva-
ture F∇ = dω+ω∧ω then also satisfies F̄ T

∇ = −F∇. For sections si, sj ,
this yields

h(F∇si, sj) + h(si, F∇sj) = 0.

(ii) If ∇ is compatible with the holomorphic structure, then ∇ = ∇1,0 +
∂̄, where ∂̄ is the Dolbeault operator and ∇1,0 is of type (1, 0). We
compute

F∇ = ∇2

= (∇1,0 + ∂̄)2

= (∇1,0)2 +∇1,0∂̄ + ∂̄∇1,0 + (∂̄)2

= (∇1,0)2 +∇1,0∂̄ + ∂̄∇1,0,

where (∂̄)2 = 0 and (∇1,0)2 is of type (2, 0), while the mixed terms are
of type (1, 1). Thus F∇ has no (0, 2)-component and

F∇ ∈ A2,0(X,End(E))⊕A1,1(X,End(E)).

(iii) If ∇ is the Chern connection, it is compatible with both the Hermitian
metric and the holomorphic structure. Therefore, by (i), F∇ is skew-
Hermitian, and by (ii), it has no (0, 2)-component. To see that F∇ is
of type (1, 1) and real, note that locally, if A = h̄−1∂h̄ is the (1, 0)
connection matrix, then

F∇ = dA+A ∧A
= (∂ + ∂̄)A+A ∧A
= ∂̄A+ ∂A+A ∧A

14



but ∂A+A ∧A = 0 by compatibility, so

F∇ = ∂̄(h̄−1∂h̄) ∈ A1,1(X,End(E)).

Thus F∇ is a real, skew-Hermitian (1, 1)-form as claimed.
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Chapter 2

Chern–Weil Theory

Classifying non-isomorphic vector bundles over a fixed base space is generally
a challenging problem. Characteristic classes offer a way to approach this by
providing topological invariants that can help differentiate between various
vector bundles. These classes are elements in the cohomology groups of the
base space. A notable example of such invariants are the Chern classes, which
are specifically associated with complex vector bundles. These are maps ck
assigning to each complex vector bundle E → M over a complex manifold
M a class ck(E) ∈ H2k(M,R) that depends only on the isomorphism type
of E. There are two ways to go about defining Chern classes, the axiomatic
approach and the more geometric approach. We will adopt the latter one.

Recall that a connection ∇ on a vector bundle E →M of rank r can be
expressed locally by the matrix ω = [ωi

j ] of connection 1-forms. Similarly,
the curvature can be represented locally by the matrix Ω = [Ωi

j ] of curvature
2-forms.

Under a change of frame these transform as ω̃ = g−1ωg + g−1dg and
Ω̃ = g−1Ωg. Now while both of these equations are nice, the one considering
the curvature is quite remarkable. Essentially it’s saying that a change of
frame acts on Ω by conjugation with g.

The key thing to realize here is that since Ω ∈ A2(M,End(E)), we can
utilize the framework we’ve developed for invariant polynomials. What this
means is that if p is a homogeneous invariant polynomial of degree k in r2

variables, then the form 2k-form p(Ω) will be independent of the local frame,
and hence define a global 2k-form on M .

It turns out that p(Ω) is closed and independent of the chosen connection,
hence [p(Ω)] yields a well-defined cohomology class in H∗(M,C) depending
only on the invariant polynomial p. This association gives rise to the Chern-
Weil homomorphism

cE : Inv(gl(r,C))→ H∗(M,C).
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2.1 Invariant Polynomials

We will begin this chapter with some algebraic preliminaries. Let C[x1, . . . , xn]
denote the C-algebra of polynomials in n indeterminates xi.

Definition 2.1.1. A polynomial p ∈ C[x1, . . . , xn] is said to be homogeneous
of degree k if

p(x1, . . . , xn) =
∑

ci1,...,ikxi1 · · ·xik ,

where the sum is taken over all nk tuples (i1, . . . , ik) such that 1 ≤ ij ≤ n
for each ij .

Definition 2.1.2. Let V be a complex vector space of dimension n. A
homogeneous polynomial of degree k on V is a map

f : V → C

such that for every basis (εi) of the dual V ∗, there exists a unique homoge-
neous polynomial p ∈ C[x1, . . . , xn] such that

f(v) = p(ε1, . . . , εn)(v) =
∑

ci1,...,ikε
i1(v) · · · εik(v) (2.1)

Note that Definition 2.1.2 is independent of the choice of a basis.

Definition 2.1.3. Let V be a vector space. Denote by P k(V ) the set of all
homogeneous polynomials of degree k on V , and

P (V ) =
⊕
k≥0

P k(V ).

Then P (V ) forms an algebra under the usual pointwise product of functions.

Definition 2.1.4. Let V be a vector space and suppose that f ∈ P k(V ).
The polarization of f is given by the tensor P (f) ∈ (V ∗)⊗k defined by

P (f) =
∑

ci1,...,ikε
i1 ⊗ · · · ⊗ εik ,

where the coefficients are determined by 2.1 and (εi) is a basis for V ∗.

Remark 2.1.5. To explicitly compute the coefficients ci1,...,ik , we can use the
partial derivatives of f in the following manner:

ci1,...,ik =
1

k!

∂kf

∂xi1 · · · ∂xik

∣∣∣∣∣
x=0

.
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Example 2.1.6. Let V be a complex vector space of dimension 2 with a basis
{e1, e2}, and f : V → C be the homogeneous polynomial of degree 2 given by

f(v) = f(x1e1 + x2e2) = x21 + 3x1x2 + 2x22.

Then

P (f) = c1,1ε
1 ⊗ ε1 + c1,2ε

1 ⊗ ε2 + c2,1ε
2 ⊗ ε1 + c2,2ε

2 ⊗ ε2,

and for the coefficients we obtain

c1,1 =
1

2!

∂2f

∂x1∂x1

∣∣∣∣∣
x=0

= 1,

c1,2 =
1

2!

∂2f

∂x1∂x2

∣∣∣∣∣
x=0

=
3

2
,

c2,1 =
1

2!

∂2f

∂x2∂x1

∣∣∣∣∣
x=0

=
3

2
,

c2,2 =
1

2!

∂2f

∂x2∂x2

∣∣∣∣∣
x=0

= 2.

Hence
P (f) = ε1 ⊗ ε1 + 3

2

(
ε1 ⊗ ε2 + ε2 ⊗ ε1

)
+ 2ε2 ⊗ ε2.

Definition 2.1.7. Let V be a vector space. A symmetric k-linear function
(or symmetric k-linear form) on V is a k-linear map

f : V × V × · · · × V → C

that is invariant under any permutation of its arguments. More formally, for
any permutation σ ∈ Sk (the symmetric group on k elements) and for all
v1, v2, . . . , vk ∈ V , the following holds:

f(vσ(1), vσ(2), . . . , vσ(k)) = f(v1, v2, . . . , vk).

The set of all symmetric k-linear functions on V is denoted by Sk(V ∗).

Proposition 2.1.8. Let Sk(V ∗) be the space of symmetric k-linear functions
on a finite dimensional complex vector space V . Then there is an isomor-
phism from Sk(V ∗) to P k(V ).

Definition 2.1.9. Let G be a Lie group and denote by g its Lie algebra. A
homogeneous polynomial p : g→ C is called invariant if

p(Adg(ξ)) = p(ξ),

for all g ∈ G and ξ ∈ g.
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We will be almost entirely focused on the case where G = GL(n,C) and
the Lie algebra is given by gl(n,C), the space of complex (n × n)-matrices.
In this case, the adjoint

Adg : gl(n,C)→ gl(n,C),

is given by conjugation B 7→ ABA−1. Therefore, a polynomial p : gl(n,C)→
C is invariant if

p(ABA−1) = p(B),

for every A ∈ GL(n,C) and B ∈ gl(n,C).

Lemma 2.1.10. The determinant

det : gl(n,C)→ C

is an invariant polynoimal.

Proof. Let A ∈ GL(n,C) and B ∈ gl(n,C). Then

det(ABA−1) = det(A)−1 det(B) det(A) = det(B).

Proposition 2.1.11. Let A ∈ gl(n,C). Then the coefficients fk(A) in

det (λI +A) =

n∑
k=0

fk(A)λ
n−k

are invariant polynoimals

Proof. By Lemma 2.1.10, the determinant is an invariant polynomial. Hence
for any B ∈ GL(n,C)

det (λI +A) = det
(
B (λI +A)B−1

)
= det

(
λI +BAB−1

)
.

That is,
n∑

k=0

fk(A)λ
n−k =

n∑
k=0

fk(BAB
−1)λn−k.

Comparing the coefficients of λn−k gives

fk(A) = fk(BAB
−1),

which yields the result.

As a direct corollary of Proposition 2.1.11 we obtain that the trace

tr : gl(n,C)→ C (2.2)

is also an invariant polynomial.
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Definition 2.1.12. Let gl(n,C) denote the Lie algebra of n × n complex
matrices. The algebra of invariant polynomials on gl(n,C), denoted by
Inv(gl(n,C)), consists of all complex-valued polynomials p : gl(n,C) → C
that satisfy the invariance property:

p(ABA−1) = p(B) for all A ∈ GL(n,C) and B ∈ gl(n,C).

Theorem 2.1.13. The ring of invariant complex-valued polynomials on gl(n,C),
denoted by Inv(gl(n,C)), is generated as a C-algebra by the coefficients fk(A)
of the characteristic polynomial of A. Specifically, for A ∈ gl(n,C), let

det (λI +A) =
n∑

k=0

fk(A)λ
n−k,

where fk(A) are the coefficients. Then,

Inv(gl(n,C)) ∼= C[f1(A), . . . , fn(A)].

For the proof of Theorem 2.1.13, see [17].

2.2 The Chern-Weil Homomorphism

Let E →M be a complex vector bundle over a complex manifoldM equipped
with a connection ∇. Let ω = [ωi

j ] and Ω = [Ωi
j ] denote the matrices

of connection 1-forms and curvature 2-forms relative to a local frame e =
(e1, . . . , er) on an open subset U ⊂M respectively. Let p be a homogeneous
invariant polynomial of degree k on gl(n,C). If ẽ = (ẽ1, . . . , ẽr) is another
frame on U , then

ẽ = eg,

for a matrix-valued function g : U → GL(r,C). Under this change of frame
the curvature matrix transforms as

Ω = gΩ̃g−1.

Hence
p(Ω) = p

(
gΩ̃g−1

)
= p(Ω̃),

and so p(Ω) defines a global 2k-form on M .

Lemma 2.2.1. Let A = [αi
j ] and β = [βij ] be matrices of forms of degree a

and b respectively. In addition, suppose that a+ b ≤ dim(M). Then

(i) tr(A ∧B) = (−1)ab tr(B ∧A).

(ii) If A = [αi
j ] is a square matrix of differential forms on M , then

d tr(A) = tr(dA).
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Proof.

(i) The (i, j)’th entry of A ∧B is given by

(A ∧B)ij =
∑
k

αi
k ∧ βkj .

Therefore

tr(A ∧B) =
∑
k

αi
k ∧ βki = (−1)ab

∑
k

βki ∧ αi
k = (−1)ab tr(B ∧A).

(ii) We have
d tr(A) = d

∑
k

αk
k =

∑
k

dαk
k = tr(dA).

Proposition 2.2.2. Let E →M be a complex vector bundle over a complex
manifold M , ∇ a conncetion on E and p a homogeneous invariant polynomial
of degree k. Then the global 2k-form p(Ω) is closed.

Proof. Let ω = [ωi
j ] and Ω = [Ωi

j ] be the connection 1-forms and curvature
2-forms on a framed open set U . Recall that Inv(gl(n,C)) is generated by
the trace polynomials tr(Ωk), so it is sufficient to show that d tr(Ωk) = 0.
We have that:

d tr(Ωk) = tr(dΩk)

= tr(Ωk ∧ ω − ω ∧ Ωk)

= tr(Ωk ∧ ω)− tr(ω ∧ Ωk)

= (−1)2k tr(ω ∧ Ωk)− tr(ω ∧ Ωk)

= tr(ω ∧ Ωk)− tr(ω ∧ Ωk)

= 0,

That is, p(Ω) is closed.

A subtlety we need to consider now is that defining Ω requires a choice
of a connection ∇ on E. This appears to make the cohomology class [p(Ω)]
reliant on ∇. However, any finite convex linear combination of connections
yields a connection again, that is, if ∇0 and ∇1 are two connections on E,
then for each t ∈ [0, 1]

∇t = (1− t)∇0 + t∇1

is again a connection on E. Also, for each t ∈ [0, 1] the connection ∇t

yields the connection and curvature matrices ωt and Ωt. It’s easy to see that
ωt = (1 − t)ω0 + tω1, which means that ωt depends smoothly on t. By the
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second structural equation, the curvature matrix Ωt also depends smoothly
on t.

Our strategy is to show that, if d
dt tr(Ω

k
t ) = dηt for some global form ηt,

then integrating this with respect to t yields

tr(Ωk
1)− tr(Ωk

0) =

∫ 1

0

d

dt
tr(Ωk

t ) dt

=

∫ 1

0
dηt dt

= d

∫ 1

0
ηt dt

where d
∫ 1
0 ηt dt is a global exact form. Passing to cohomology classes gives

[tr(Ωk
1)] = [tr(Ωk

0)] which would be enough to show that the class [p(Ω)]
doesn’t depend on the choice of the connection.

Lemma 2.2.3. Let E → M be a complex vector bundle over a complex
manifold M . Let ωt ∈ Ak(M,End(E)) and ηt ∈ Al(M,End(E)) be families
of End(E)-valued differential forms depending smoothly on the parameter
t ∈ R. Then:

(i) If ωt = [ωi
j(t)] is a square matrix, then

d

dt
tr(ωt) = tr

(
d

dt
ωt

)
.

(ii) ωt and ηt satisfy the product rule

d

dt
(ωt ∧ ηt) = ω̇t ∧ ηt + ωt ∧ η̇t.

Here ω̇t and η̇t both refer to the derivative with respect to t.

(iii) The derivative d
dt commutes with the exterior derivative d. That is,

d

dt
(dωt) = d

(
d

dt
ωt

)
.

(iv) For [a, b] ⊂ R, ∫ b

a
dωt dt = d

(∫ b

a
ωt dt

)
.

Proof. (i) A direct calculation gives

d

dt
tr(ωt) =

d

dt

∑
i

(ωt)
i
i =

∑
i

d

dt
(ωt)

i
i = tr

(
d

dt
ωt

)
.
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(ii) In local coordinates (U, x = (x1, . . . , xn)) we can write

ωt =
∑
I

ωI(x, t)dx
I and ηt =

∑
J

ηJ(x, t)dx
J .

Then
ωt ∧ ηt =

∑
I,J

ωI(x, t)ηJ(x, t)dx
I ∧ dxJ ,

which gives

d

dt
(ωt ∧ ηt) =

∑
I,J

d

dt
(ωI(x, t)ηJ(x, t)) dx

I ∧ dxJ

=
∑
I,J

(
d

dt
ωI(x, t)ηJ(x, t) + ωI(x, t)

d

dt
ηJ(x, t)

)
dxI ∧ dxJ

=
d

dt
ωt ∧ ηt + ωt ∧

d

dt
ηt

= ω̇t ∧ ηt + ωt ∧ η̇t.

(iii) Locally ωt =
∑

I ωI(x, t)dx
I . This gives

dωt =
∑
I

∑
j

∂ωI(x, t)

∂xj
dxj ∧ dxI .

Now

d

dt
(dωt) =

d

dt

∑
I

∑
j

∂ωI(x, t)

∂xj
dxj ∧ dxI


=
∑
I

∑
j

∂2ωI(x, t)

∂t∂xj
dxj ∧ dxI

=
∑
I

∑
j

∂2ωI(x, t)

∂xj∂t
dxj ∧ dxI

= d

(
d

dt
ωt

)
,

by the symmetry of the mixed partials.

(iv) Again, write ωt =
∑

I ωI(x, t)dx
I , so

dωt =
∑
I

∑
j

∂ωI(x, t)

∂xj
dxj ∧ dxI .

Integrating dωt over t ∈ [a, b] gives∫ b

a
dωt dt =

∫ b

a

∑
I

∑
j

∂ωI(x, t)

∂xj
dxj ∧ dxI dt.
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By the Leibniz integral rule, we may interchange the order of integra-
tion and differentiation, yielding∫ b

a
dωt dt =

∑
I

∑
j

∂

∂xj

∫ b

a
ωI(x, t) dt dx

j ∧ dxI .

On the other hand, computing d
∫ b
a ωt dt gives

d

∫ b

a
ωt dt =

∑
I

∂

∂xj

(∫ b

a
ωI(x, t) dt

)
dxj ∧ dxI .

Since the expressions agree, we conclude∫ b

a
dωt dt = d

(∫ b

a
ωt dt

)
.

Proposition 2.2.4 (Generalized Second Bianchi Identity). Let ∇ be a con-
nection on a vector bundle E. Suppose ω and Ω are the connection and
curvature matrices of ∇ relative to a local frame on U . Then for any integer
k ≥ 1, we have

d(Ωk) = Ωk ∧ ω − ω ∧ Ωk.

Proof. For k = 1, the second structural equation yields

dΩ = d(dω) + (dω) ∧ ω − ω ∧ dω
= (Ω− ω ∧ ω) ∧ ω − ω ∧ (Ω− ω ∧ ω)
= Ω ∧ ω − ω ∧ Ω.

Now suppose the equation holds for k = n. We show it also holds for
k = n+ 1. Using the Leibniz rule, we have:

dΩn+1 = d(Ωn ∧ Ω)

= dΩn ∧ Ω+ Ωn ∧ dΩ.

Substituting the inductive hypothesis dΩn = Ωn ∧ ω − ω ∧ Ωn and dΩ =
Ω ∧ ω − ω ∧ Ω, we get

dΩn+1 = (Ωn ∧ ω − ω ∧ Ωn) ∧ Ω+ Ωn ∧ (Ω ∧ ω − ω ∧ Ω)

= Ωn ∧ ω ∧ Ω− ω ∧ Ωn ∧ Ω+ Ωn ∧ Ω ∧ ω − Ωn ∧ ω ∧ Ω.

Using the associativity of the wedge product and simplifying terms, we find

dΩn+1 = Ωn+1 ∧ ω − ω ∧ Ωn+1.

Thus, the result holds for k = n + 1. By induction, the formula is true for
all k ≥ 1.
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Proposition 2.2.5. If ∇t is a family of connections on E with connection
and curvature matrices ωt and Ωt relative to a local frame on an open set U
depending smoothly on t ∈ R, then

d

dt

(
tr Ωk

t

)
= d

(
k tr(Ωk−1

t ∧ ω̇t)
)
.

Moreover, the d(k tr(Ωk−1
t ∧ ω̇t)) can be patched together to obtain a global

form on M .

Proof. By Lemma 2.2.3, taking traces commutes with differentiation. There-
fore, we have

d

dt

(
tr(Ωk

t )
)
= tr

(
d

dt
Ωk
t

)
.

Using the product rule for differentiation of wedge products, we expand d
dtΩ

k
t

as follows:
d

dt
Ωk
t =

k−1∑
m=0

Ωm
t ∧ Ω̇t ∧ Ωk−1−m

t ,

where Ω̇t =
d
dtΩt. Taking the trace, we obtain

tr

(
d

dt
Ωk
t

)
=

k−1∑
m=0

tr
(
Ωm
t ∧ Ω̇t ∧ Ωk−1−m

t

)
.

The trace of a product of matrices (with wedge products) is cyclically in-
variant, and the degrees of the curvature 2-forms ensure that all exponents
of −1 are even. Therefore, each term in the sum above is equal:

tr
(
Ωm
t ∧ Ω̇t ∧ Ωk−1−m

t

)
= tr

(
Ωk−1
t ∧ Ω̇t

)
.

Since there are k identical terms in the sum, we obtain

tr

(
d

dt
Ωk
t

)
= k tr

(
Ωk−1
t ∧ Ω̇t

)
.

Thus,
d

dt

(
tr Ωk

t

)
= k tr

(
Ωk−1
t ∧ Ω̇t

)
.

Now, the second structural equation gives

Ωt = dωt + ωt ∧ ωt,

and differentiating both sides with respect to t, we obtain

Ω̇t = dω̇t + ω̇t ∧ ωt + ωt ∧ ω̇t.
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Substituting the expression for Ω̇t into the trace and using Proposition 2.2.4,
we have

tr
(
Ωk−1
t ∧ Ω̇t

)
= tr

(
Ωk−1
t ∧ dω̇t +Ωk−1

t ∧ ω̇t ∧ ωt +Ωk−1
t ∧ ωt ∧ ω̇t

)
= tr

(
Ωk−1
t ∧ dω̇t − ωt ∧ Ωk−1

t ∧ ω̇t +Ωk−1
t ∧ ωt ∧ ω̇t

)
= tr

(
Ωk−1
t ∧ dω̇t +

(
Ωk−1
t ∧ ωt − ωt ∧ Ωk−1

t

)
∧ ω̇t

)
= tr

(
Ωk−1
t ∧ dω̇t + dΩk−1

t ∧ ω̇t

)
= tr

(
d(Ωk−1

t ∧ ωt)
)

= d tr(Ωk−1
t ∧ ωt).

We conclude that

d

dt

(
tr Ωk

t

)
= k tr

(
Ωk−1
t ∧ Ω̇t

)
= d

(
k tr(Ωk−1

t ∧ ωt)
)
.

To complete the proof, we need to ensure that the form k tr(Ωk−1
t ∧ ω̇t)

patches together to define a global form on M . To achieve this, consider
two overlapping local frames e and ẽ on an open set U ⊂ M , related by a
transition function g : U → GL(n,C) such that ẽ = eg. Under this change
of frame, the connection and curvature matrices transform as follows:

ω̃t = g−1ωtg + g−1dg and Ω̃t = g−1Ωtg.

Differentiating the connection matrix with respect to t yields

˙̃ωt = g−1ω̇tg,

since g−1dg does not depend on t. Now, consider the form tr
(
Ω̃k−1
t ∧ ˙̃ωt

)
:

tr
(
Ω̃k−1
t ∧ ˙̃ωt

)
= tr

(
g−1Ωk−1

t g ∧ g−1ω̇tg
)

= tr
(
g−1Ωk−1

t g ∧ g−1ω̇tg
)
.

Utilizing the cyclic property of the trace and the associativity of the wedge
product, we can rewrite the above expression as

tr
(
g−1Ωk−1

t g ∧ g−1ω̇tg
)
= tr

(
Ωk−1
t ∧ ω̇t

)
.

This equality shows that the local expressions tr
(
Ωk−1
t ∧ ω̇t

)
computed with

respect to different frames agree. Therefore, these local forms patch together
to define a global form on M .
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Proposition 2.2.6. Let E → M be a rank n complex vector bundle over a
complex manifold M , ∇ a connection on E and p a homogeneous invariant
polynomial of degree k on gl(n,R). Then the cohomology class [p(Ω)] ∈
H2k(M,C) is independent of the connection ∇.

Proof. Suppose that ∇0 and ∇1 are two connections on E. Then the convex
combination ∇t = (1− t)∇0 + t∇1 for t ∈ R is also a connection on E with
connection and curvature matrices ωt and Ωt over a trivialized open set. Now

d

dt

(
tr Ωk

t

)
= d(k tr(Ωk−1

t ω̇t))

and so ∫ 1

0

d

dt

(
tr Ωk

t

)
dt = tr(Ωk

1)− tr(Ωk
0).

By Lemma 2.2.3, we also have∫ 1

0
d(k tr(Ωk−1

t ∧ ω̇t))dt = d

∫ 1

0
k tr(Ωk−1

t ∧ ω̇t)dt.

Therefore

tr(Ωk
1)− tr(Ωk

0) = d

∫ 1

0
k tr(Ωk−1

t ω̇t)dt.

The right-hand side is now a global exact form so passing to cohomology
yields that [tr(Ωk

1)] = [tr(Ωk
0)] which proves that the cohomology class of

tr(Ωk) is independent of the connection.

All in all we’ve have proved the following theorem:

Theorem 2.2.7. Let E → M be a complex vector bundle over a complex
manifold M , ∇ a connection on E and p an invariant homogeneous polyno-
mial of degree k on gl(r,C). Then

(i) The global 2k-form p(Ω) is closed.

(ii) The cohomology class [p(Ω)] ∈ H2k(M,C) is independent of the choice
of the connection.

2.3 Chern Classes

As demonstrated in Lemma 2.1.10, the determinant det : gl(n,C) → C is
an invariant polynomial. Proposition 2.1.11 showed that for A ∈ gl(n,C),
the coefficients fk(A) of the characteristic polynomial det(λI + A) are also
invariant polynomials.
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Definition 2.3.1. Let E → X be a complex vector bundle over a complex
manifold X of rank r. Let ∇ be a connection on E with curvature F∇. The
closed differential form

ck(E,∇) := fk

(
i

2π
F∇

)
∈ A2k(X)

is called the k’th Chern form.

Definition 2.3.2. Let E → X be a complex vector bundle over a complex
manifold X of rank r. Let ∇ be a connection on E with curvature F∇. The
k’th Chern class of E is defined to be the induced cohomology class

ck(E) := [ck(E,∇)] =
[
fk

(
i

2π
F∇

)]
∈ H2k(X,C).

In particular, c0(E) = 1 and ck(E) = 0 for k > r. It is worth noting that
for k = 1, f1(F∇) is given by the trace, so c1(E) is represented by

c1(E,∇) =
i

2π
Ωk
k =

i

2π
Rk

kαβ̄dz
α ∧ dz̄β =

i

2π
Rαβ̄dz

α ∧ dz̄β. (2.3)

Definition 2.3.3. The total Chern class of E is given by

c(E) :=

[
det

(
I +

i

2π
F∇

)]
= 1 + c1(E) + · · ·+ cr(E).

We now consider how the Chern classes and the total Chern class behave
under the standard operations on vector bundles.

Proposition 2.3.4. Let E and F be complex vector bundles of rank r over a
complex manifold X. Let ∇1 and ∇2 be connections on E and F , with cur-
vatures F∇1 and F∇2. Then the total Chern class of the direct sum satisfies

c(E ⊕ F ) = c(E) · c(F ).

Proof. The curvature of the direct sum connection ∇1 ⊕ ∇2 is F∇1 ⊕ F∇2 .
Therefore,

c(E ⊕ F,∇1 ⊕∇2) = det

(
I +

i

2π
(F∇1 ⊕ F∇2)

)
= det

(
IE +

i

2π
F∇1

)
· det

(
IF +

i

2π
F∇2

)
= c(E,∇1) · c(F,∇2).

Passing to cohomology classes yields c(E ⊕ F ) = c(E) · c(F ).
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Note that this actually gives a formula for ck(E ⊕ F ) also by comparing
the degrees. We obtain

ck(E ⊕ F ) =
r∑

i=0

ci(E) · cr−i(F ).

The total Chern class also satisfies the following naturality condition with
respect to pullbacks.

Proposition 2.3.5. Let f : Y → X be a smooth map between complex
manifolds. Let E → X be a complex vector bundle over X equipped with a
connection ∇. Then

c(f∗E) = f∗c(E).

Proof. The curvature of the pullback connection f∗∇ is Ff∗∇ = f∗F∇. Thus,

c(f∗E, f∗∇) = det

(
I +

i

2π
f∗F∇

)
= f∗

(
det

(
I +

i

2π
F∇

))
= f∗c(E,∇).

Passing to cohomology classes gives c(f∗E) = f∗c(E).

For the tensor product, the situation is a bit trickier. Using the so-called
splitting principle, one obtains a formula for the total Chern class of the
tensor product (see Bott and Tu [6] for details). For the first Chern class we
do have the following.

Proposition 2.3.6. Let E and F be complex vector bundles of rank r and s
over a complex manifold X, with connections ∇1 and ∇2 of curvatures F∇1

and F∇2. Then
c1(E ⊗ F ) = s c1(E) + r c1(F ).

Proof. The curvature of the tensor product connection is

F∇1⊗∇2 = F∇1 ⊗ idF + idE ⊗F∇2 .

Therefore,

c1(E ⊗ F,∇1 ⊗∇2) =
i

2π
tr(F∇1⊗∇2)

=
i

2π
(s tr(F∇1) + r tr(F∇2))

= sc1(E,∇1) + rc1(F,∇2).

Passing to cohomology yields c1(E ⊗ F ) = sc1(E) + rc1(F ).
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The remedy for the Chern class not being very manageable with the
tensor product is given by introducing something called the Chern charac-
ter. Recall that the trace tr : gl(n,C)→ C is an invariant polynomial, this
induces invariant homogeneous polynomials gk of degree k defined by

tr(expA) = g0(A) + g1(A) + · · ·

Definition 2.3.7. Let E → X be a complex vector bundle over a complex
manifold X. Let∇ be a connection on E with curvature F∇. The k’th Chern
character chk(E) ∈ H2k(X,C) of E is defined as the cohomology class

chk(E) := [chk(E,∇)] ,

where
chk(E,∇) = gk

(
i

2π
F∇

)
∈ A2k(X)

is the Chern character form.

Definition 2.3.8. The total Chern character is defined by

ch(E) := ch0(E) + ch1(E) + · · ·

Proposition 2.3.9. Let E and F be complex vector bundles over a complex
manifold X with connections ∇1 and ∇2. Then

ch(E ⊗ F ) = ch(E) · ch(F ).

Proof. The curvature of the tensor product bundle is

F∇1⊗∇2 = F∇1 ⊗ idF + idE ⊗F∇2 .

The exponential map satisfies

exp(A⊗ id+ id⊗B) = exp(A)⊗ exp(B),

so

ch(E ⊗ F ) = tr

(
exp

(
i

2π
F∇1⊗∇2

))
= tr

(
exp

(
i

2π
F∇1

)
⊗ exp

(
i

2π
F∇2

))
= tr

(
exp

(
i

2π
F∇1

))
· tr
(
exp

(
i

2π
F∇2

))
= ch(E) · ch(F ).
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To conclude this section we will specialize to the case where X is a
compact Kähler manifold.

Proposition 2.3.10. Let E → X be a complex vector bundle over a compact
Kähler manifold X. If η is any real (1, 1)-form representing c1(E), then there
exists a Hermitian metric on E whose Chern connection has curvature F∇
satisfying

i

2π
tr(F∇) = η.

Proof. Begin with an arbitrary Hermitian metric h on E, and let F∇ be
the curvature form of its Chern connection. Then i

2π tr(F∇) is a real (1, 1)-
form representing c1(E). By assumption, the given real (1, 1)-form η also
represents c1(E), so their difference

i

2π
tr(F∇)− η

is exact. By the global ∂∂̄-lemma, there exists a smooth real function f such
that

i

2π
tr(F∇)− η =

i

2π
∂∂̄f.

Define a new Hermitian metric h̃ = efh. The curvature F̃ of the Chern
connection associated to h̃ satisfies

F̃ = F∇ + ∂̄∂f,

and so
i

2π
tr(F̃ ) =

i

2π
tr(F∇)−

i

2π
∂∂̄f = η.

Thus, the new metric has the desired property.

2.4 Chern Classes for Flat and Projectively Flat
Bundles

In this section we will look at how Chern classes behave when the under-
lying vector bundle is equipped with a flat connection or a projectively flat
connection. We will begin with the flat connections and state the following.

Theorem 2.4.1. Let L be a complex line bundle over a complex manifold
X. Then L admits a flat connection if and only if c1(L) = 0.

Proof. If L admits a flat connection, then clearly c1(L) = 0. Conversely,
suppose that c1(L) = 0. Let∇ be a connection on L and denote its curvature
by F∇. Then F∇ = dη for some 1-form η. From 1.2.2 we know that the space
of connections is an affine space, so consider the new connection

∇′ = ∇− η.
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Denote the connection 1-forms for ∇ and ∇′ by ω and ω′ respectively. Then
locally,

F∇′ = dω′ = d(ω − η) = dω − dη = F∇ − dη = 0.

Therefore, ∇′ is a flat connection on L.

Definition 2.4.2. A projectively flat bundle is a complex vector bundle E
over a complex manifold X equipped with a connection ∇ whose curvature
F∇ satisfies

F∇ = η ⊗ idE

for some closed 2-form η ∈ A2(X). In other words, the curvature is propor-
tional to the identity endomorphism of E. If η = 0, then the connection is
flat, so every flat bundle is projectively flat, though the converse does not
necessarily hold.

Proposition 2.4.3. Let E → X be a projectively flat bundle of rank r over
a complex manifold X. Then its total Chern class can be expressed in terms
of the first Chern class and its rank as follows:

c(E) =

(
1 +

c1(E)

r

)r

.

Proof. Since E is projectively flat, it admits a connection ∇ with curvature

F∇ = η ⊗ idE

for some 2-form η on X. The total Chern class is given by

c(E) =

[
det

(
I +

i

2π
F∇

)]
.

Note that det
(
I + i

2πF∇
)

is the determinant of a diagonal matrix with each
diagonal entry 1 + i

2πη, so

det

(
I +

i

2π
F∇

)
=

(
1 +

i

2π
η

)r

.

Now, recall that c1(E) is represented by

i

2π
tr(F∇) =

i

2π
η tr(idE) =

i

2π
rη.

Therefore, (
1 +

i

2π
η

)r

=

(
1 +

c1(E,∇)
r

)r

,

and so
c(E) =

(
1 +

c1(E)

r

)r

.
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Proposition 2.4.4. Let E → X be a projectively flat bundle over a complex
manifold X. Then the bundle End(E) admits a flat connection.

Proof. The endomorphism bundle End(E) is naturally isomorphic to E∗⊗E.
The curvature of E∗ is given by

F∇E∗ = −η ⊗ idE∗ ,

so the curvature of E∗ ⊗ E is

F∇1⊗∇2 = F∇E∗⊗idE + idE∗ ⊗F∇E
= −(η⊗idE∗)⊗idE + idE∗ ⊗(η⊗idE) = 0.

Thus, E∗ ⊗ E admits a flat connection, so End(E) does as well.

Proposition 2.4.3 also yields formulas for the total Chern characters ch(E)
and ch(E∗) for a projectively flat bundle and its duals in the following way:

ch(E) = r exp

(
1

r
c1(E)

)
and ch(E∗) = r exp

(
−1

r
c1(E)

)
.
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Chapter 3

Hermite–Einstein Vector
Bundles

Hermite–Einstein vector bundles form a central object of study in the inter-
section of differential geometry, algebraic geometry, and gauge theory. These
bundles provide a bridge between the notion of stability in algebraic geom-
etry and the existence of canonical metrics on vector bundles in differential
geometry. The study of these vector bundles originates from the famous
Kobayashi–Hitchin correspondence, which proved that a holomorphic vector
bundle admits a Hermite–Einstein metric if and only if it is slope polystable
[18].

Moreover, Hermite–Einstein vector bundles are connected with the the-
ory of Yang–Mills connections, which arise in both mathematics and physics.
In the physical setting, Hermitian Yang–Mills connections describe energy-
minimizing configurations in gauge theory, particularly in the context of
string theory and compactifications on Calabi–Yau manifolds.

This chapter introduces the Hermite–Einstein condition for vector bun-
dles, explores the relationship between Hermite–Einstein metrics and stabil-
ity, and discusses the Chern classes of these bundles, which capture essential
topological information.

3.1 Hermite–Einstein Condition

To motivate the consideration for Hermite–Einstein vector bundles, let us
begin by recalling what Einstein’s field equations state. Suppose that (X, g)
is a Riemannian manifold. The Einstein field equation is given by

Ric =
1

2
S + T,

where S is the scalar curvature of g and T the so-called stress-energy tensor.
Now in our case T ≡ 0 and so we obtain the following definition:
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Definition 3.1.1. A Riemannian manifold (X, g) is called Einstein if the
Ricci tensor Ric is proportional to the metric g. That is

Ric = λg,

for λ ∈ R.

Consider now a compact Hermitian manifold (X, g) and the fundamental
form ω = g(J(−),−). By definition, (X, g) is Kähler if and only if dω = 0
or equivalently if J is parallel with respect to the Levi–Civita connection of
g. Now g can be viewed as a Hermitian metric on the tangent bundle of X
and instead of asking if the Ricci curvature of the Levi–Civita connection on
the tangent bundle of X is proportional to g, we can ask the same question
about the curvature F∇ of a Chern connection ∇ associated to a Hermitian
metric on any holomorphic vector bundle (E, h) over (X, g).

Clearly, we are trying to generalize the definition above and since it
depends on the Ricci curvature, we start with the curvature tensor F∇ of
E. This is an End(E)-valued 2-form so locally on a framed open set we can
write

F∇ =
∑

Ωi
j ⊗ εj ⊗ ei

=
∑(∑

Ri
jαβ̄dz

α ∧ dz̄β
)
⊗ εj ⊗ ei.

Now, the Ricci tensor is given by tracing over the Levi–Civita connection on
the tangent bundle of X. We will do something similar here and consider
the trace/contraction of F∇ with the fundamental form ω. However, tracing
with the form ω is not as straightforward as it sounds. What we will do is
consider the adjoint Λ of the Lefschetz operator to define this. Recall that
the Lefschetz operator L : Ap,q(X)→ Ap+1,q+1(X) is given by

α 7→ α ∧ ω.

Let ek : Ap,q(X) → Ap+1,q(X) be the operator given by α 7→ dzk ∧ α and
define ēk : Ap,q(X) → Ap,q+1(X) similarly. Recall now also that the wedge
product has the interior product as its adjoint. Denote these by ιk and ῑk
respectively. Now

L(α) = α ∧ ω
= igjk̄α ∧ dzj ∧ dz̄k

=
∑
j,k

igjk̄ej ēk(α).

The adjoint Λ is thus given by

Λ = −i
∑
j,k

gjk̄ ῑkιj .

35



Applying this yields

ΛF∇ = Λ
(∑

Ωi
j ⊗ εj ⊗ ei

)
= Λ

(∑(∑
Ri

jαβ̄dz
α ∧ dz̄β

)
⊗ εj ⊗ ei

)
=
∑(∑

Ri
jαβ̄Λ(dz

α ∧ dz̄β)
)
⊗ εj ⊗ ei

= −i
∑(∑

gαβ̄Ri
jαβ̄

)
⊗ εj ⊗ ei.

Note that multiplying by i gives iΛF∇ =
∑(∑

gαβ̄Ri
jαβ̄

)
⊗ εj ⊗ ei. In

literature you might see ΛF∇ being denoted by K and called the mean
curvature. This is defined by setting Ki

j = gαβ̄Ri
jαβ̄

and K(ξ) = Ki
jξ

jei,
for a section ξ = ξiei. There is also the mean curvature form obtained by
setting Kjk̄ = hik̄K

i
j and K̂(ξ, η) = Kjk̄ξ

j η̄k. Using this we will define the
Hermite–Einstein condition as follows:

Definition 3.1.2. A Hermitian metric h on a holomorphic vector bundle E
is called weakly Hermite–Einstein if there exists some real function λ for
which

iΛF∇ = λ idE .

If λ is a constant, we say that h is Hermite–Einstein.

Proposition 3.1.3. (i) Every Hermitian line bundle (L, h) over a com-
plex manifold X satisfies the weak Einstein condition (with respect to
any Hermitian metric g on X).

(ii) If (E, h) over (X, g) satisfies the (weak) Einstein condition with factor
λ, then the dual bundle (E∗, h∗) satisfies the (weak) Einstein condition
with factor −λ.

(iii) If (E1, h1) and (E2, h2) over (X, g) satisfy the (weak) Einstein condition
with factors λ1 and λ2, respectively, then their tensor product (E1 ⊗
E2, h1⊗h2) satisfies the (weak) Einstein condition with factor λ1+λ2.

(iv) The Whitney sum (E1⊕E2, h1⊕ h2) satisfies the (weak) Einstein con-
dition with factor λ if and only if both summands (E1, h1) and (E2, h2)
satisfy the (weak) Einstein condition with the same factor λ.

Proof. (i) The curvature F∇ of the Chern connection ∇ is an imaginary
(1, 1)-form. It follows that iΛF∇ = ΛiF∇ is a real-valued function on
X and hence satisfies the weak Einstein condition.

(ii) Suppose that ∇ is the Chern connection on E and iΛF∇ = λ idE . Then
the induced connection ∇∗ on E∗ has curvature F ∗

∇ = −F T
∇ . Thus

iΛF ∗
∇ = iΛ(−F T

∇) = iΛ(F T
∇) = −λ idE ,
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i.e. the dual bundle (E∗, h∗) satisfies the (weak) Einstein condition
with factor −λ.

(iii) Recall that on E1 ⊗ E2, the curvature is given by F∇1⊗∇2 = F∇1 ⊗
idE2 + idE1 ⊗F∇2 . We obtain

iΛF∇1⊗∇2 = iΛ(F∇1 ⊗ idE2 + idE1 ⊗F∇2)

= iΛ(F∇1)⊗ idE2 + idE1 ⊗iΛ(F∇2)

= λ1 idE1 ⊗ idE2 + idE1 ⊗λ2 idE2

= (λ1 + λ2) idE1⊗E2 .

(iv) If (E1⊕E2, h1⊕h2) satisfies the (weak) Einstein condition with factor
λ, then given the connection ∇ = ∇1 +∇2 on E1 ⊕ E2, the curvature
is given by F∇ = F∇1 + F∇2 . This gives

λ idE1⊕E2 = iΛF∇

= iΛ(F∇1 + F∇2)

= iΛF∇1 + iΛF∇2 .

It follows that iΛF∇j = λ idEj . Conversely, if both summands (E1, h1)
and (E2, h2) satisfy the (weak) Einstein condition with the same factor
λ, then

iΛF∇ = iΛ(F∇1 + F∇2)

= iΛF∇1 + iΛF∇2

= λ idE1 +λ idE2

= λ idE1⊕E2 .

The Einstein condition imposes a strong restriction to possible sheaf mor-
phisms. To see this we will state the following useful result which is mostly
based on the maximum principle by E. Hopf.

Theorem 3.1.4. Let (E, h) be a Hermitian vector bundle over a compact
Hermitian manifold (X, g). Let ∇ be the Chern connection of E, F∇ its
curvature, and K̂ the mean curvature.

(i) If K̂ is negative semi-definite everywhere on X, then ∇ξ = 0 for any
holomorphic section ξ of E and K̂(ξ, ξ) = 0.

(ii) If K̂ is negative semi-definite everywhere on X and negative definite at
some point of X, then E admits no non-zero holomorphic sections.

Proposition 3.1.5. Let (E1, h1) and (E2, h2) be Hermitian vector bundles
over a compact Hermitian manifold (X, g) satisfying the (weak) Einstein
condition with factors λ1 and λ2, respectively. If λ2 < λ1, then each sheaf
homomorphism f : E1 → E2 is zero.
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Proof. Let f : E1 → E2 be a morphism of sheaves. The map f is a global
holomorphic section of E∗

1 ⊗E2, which satisfies the weak Einstein condition
with factor λ2 − λ1. Now Since λ2 − λ1 < 0 we have that

ΛF∇1⊗∇2 = (λ2 − λ1) idE1⊗E2

< 0,

i.e. ΛF∇1⊗∇2 is negative definite and hence f = 0.

Generally speaking, these kinds of Hermite–Einstein metrics are not easy
to describe, but they exist relatively frequently and the benefit is that those
holomorphic bundles that admit such a metric can be described algebraically
as we will see later on.

3.2 Vanishing Theorems

We will now consider some consequences of the Hermite–Einstein condition
on the sections of a holomorphic Hermitian vector bundle (E, h) over a com-
pact complex manifold X.

Lemma 3.2.1 (Bochner). If f ∈ Ω0(X) is a real-valued function such that
∆f ≥ 0, then ∆f = 0 and f is constant.

The vanishing theorem we are aiming for follows from Bochner’s result
and the following lemma.

Lemma 3.2.2. Let U ⊂ X be an open subset. For a holomorphic section
ξ ∈ H0(U,E) we have that

∆h(ξ, ξ) = −iΛh(F∇ξ, ξ) + iΛ|∇ξ|2,

where F∇ denotes the curvature of the Chern connection on (E, h).

Proof. Let ξ ∈ H0(U,E) be a holomorphic section. Then as the Chern
connection is compatible with h we have that

dh(ξ, ξ) = h(∇ξ, ξ) + h(ξ,∇ξ).

Also as ∇0,1 = ∂̄ for the Chern connection and ξ is holomorphic, ∇ξ is of
type (1, 0). A type comparison yields

∂h(ξ, ξ) = h(∇ξ, ξ).

It follows that

∂̄∂h(ξ, ξ) = d∂h(ξ, ξ)

= dh(∇ξ, ξ)
= h(F∇ξ, ξ)− h(∇ξ,∇ξ),
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since generally for a p-form η ∈ Ap(U,E) and 1-form β ∈ Ω1(U,E) we have

dh(η, β) = h(∇η, β) + (−1)ph(η,∇β).

So all in all

∆h(ξ, ξ) = iΛ(∂∂̄h(ξ, ξ))

= −iΛ(∂̄∂h(ξ, ξ))
= −iΛh(F∇ξ, ξ) + iΛh(∇ξ,∇ξ)
= −iΛh(F∇ξ, ξ) + iΛ|∇ξ|2.

Proposition 3.2.3. If (E, h) is a Hermite–Einstein vector bundle over X
with proportionality factor λ < 0, then E has no non-trivial global holomor-
phic sections. If λ = 0, then ∇ξ = 0 for every ξ ∈ H0(X,E).

Proof. Let ξ be a global holomorphic section. Then ∇ξ is of type (1, 0) and
locally

∇ξ =
∑

ηj ⊗ dzj .

Now

iΛh(∇ξ,∇ξ) = iΛ
∑
j,k

h(ηj , ηk)dz
j ∧ dz̄k

=
∑
j,k

h(ηj , ηk)g
jk,

and for each point p ∈ X there are local coordinates with gjk(p) = δjk. It
follows that

iΛh(∇ξ,∇ξ) ≥ 0,

and the equality holds when ∇ξ = 0. Lemma 3.2.2 gives

∆h(ξ, ξ) = −iΛh(F∇ξ, ξ) + iΛ|∇ξ|2,

and since F∇ ∈ A2(X,End(E)) we can write it locally on a framed open set
U as F∇ =

∑
Ωi
j ⊗ εj ⊗ ei. where Ωi

j = Ri
jαβdz

α ∧ dz̄β denote the curvature
2-forms. Writing ξ = ξkek we obtain F∇ξ =

∑
Ωi
jξ

j ⊗ ei and so

h(F∇ξ, ξ) = h(Ωi
jξ

j ⊗ ei, ξkek)
= Ωi

jξ
j ξ̄kh(ei, ek)

= hikΩ
i
jξ

j ξ̄k

= hikR
i
jαβξ

j ξ̄kdzα ∧ dz̄β.
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We obtain

Λh(F∇ξ, ξ) = −ihikgαβRi
jαβξ

j ξ̄k

= −igαβRi
jαβh(ξ, ξ),

which yields −iΛh(F∇ξ, ξ) = −gαβRi
jαβh(ξ, ξ) and the Hermite–Einstein

condition gives
−iΛh(F∇ξ, ξ) = −λh(ξ, ξ).

Thus
∆h(ξ, ξ) = −λh(ξ, ξ) + iΛ|∇ξ|2.

When λ < 0 we have ∆h(ξ, ξ) ≥ 0 and Bochner’s lemma implies that
∆h(ξ, ξ) = 0 and h(ξ, ξ) is constant. Since both of the terms −λh(ξ, ξ)
and iΛ|∇ξ|2 are non-negative, they both vanish. In particular ∇ξ = 0 and

h(ξ, ξ) = 0,

i.e. ξ = 0.

Theorem 3.2.4 (Kobayashi). Let (E, h) be a Hermite–Einstein vector bun-
dle over X with proportionality factor λ. For the bundle E⊗r ⊗ E∗⊗s the
following holds:

(i) If λ < 0, then H0(X,E⊗r ⊗ E∗⊗s) = 0 for r > s, and for every

ξ ∈ H0(X,E⊗r ⊗ E∗⊗r)

we have that ∇ξ = 0.

(ii) If λ = 0, then for any ξ ∈ H0(X,E⊗r ⊗ E∗⊗s), ∇ξ = 0 holds for all r
and s.

(iii) If λ > 0, then H0(X,E⊗r ⊗ E∗⊗s) = 0 for r < s, and for every

ξ ∈ H0(X,E⊗r ⊗ E∗⊗r)

we have that ∇ξ = 0.

Proof. Recall that the tensor power E⊗r of a Hermite–Einstein bundle E is
Hermite–Einstein with proportionality factor rλ and the dual bundle E∗⊗s

is Hermite–Einstein with proportionality factor −sλ. It follows that E⊗r ⊗
E∗⊗s is Hermite–Einstein with proportionality factor (r − s)λ. All of the
statements now follow from Proposition 3.2.3 by analyzing the sign of (r −
s)λ.

Corollary 3.2.5. If (E, h) is a Hermite–Einstein vector bundle over X with
proportionality factor λ = 0 and ξ ∈ H0(X,E) has a zero, then ξ = 0.
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Proof. Let ξ ∈ H0(X,E), then the above theorem states that ∇ξ = 0 and
so

dh(ξ, ξ) = h(∇ξ, ξ) + h(ξ,∇ξ) = 0,

hence h(ξ, ξ) is constant. If there exist p ∈ X with ξ(p) = 0, then

h(ξ, ξ) = h(ξ(p), ξ(p)) = 0,

and so ξ = 0.

3.3 Chern Classes of Hermite–Einstein Vector Bun-
dles

Throughout this section, let (E, h) denote a Hermitian vector bundle of rank
r over a compact Hermitian manifold (X, g), where ω denotes the associated
fundamental form of the metric g. Most of the considerations here follow
Kobayashi’s treatment [10] and Lübke’s proof [11] for an inequality involving
the first and second Chern classes.

We begin with a useful formula for the wedge product of a real (1, 1)-
form with powers of the fundamental form. Let (ε1, . . . , εn) be an unitary
coframe on X such that

ω = i
∑

εα ∧ ε̄α.

If η = i
∑
ηαβ̄ε

α ∧ ε̄β is a real (1, 1)-form, then the wedge product η ∧ ωn−1

is given by

η ∧ ωn−1 =
1

n

(∑
ηαᾱ

)
ωn.

The next lemma provides another formula that will be used in subsequent
computations involving Chern classes.

Lemma 3.3.1. Let (ε1, . . . , εn) be an unitary coframe on the Hermitian
manifold X. For any indices α, β, γ, δ ∈ {1, . . . , n}, the following identity
holds:

n(n− 1) εα ∧ ε̄β ∧ εγ ∧ ε̄δ ∧ ωn−2 =


−ωn, if α = β and γ = δ, α ̸= γ,

ωn, if α = δ and β = γ, α ̸= β,

0, otherwise.

Proof. The fundamental form ω is given by

ω = i
n∑

λ=1

ελ ∧ ελ.

Raising ω to the (n− 2)-th power, we obtain

ωn−2 = in−2
∑
I

εI ∧ εI ,
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where the sum is over all multi-indices I = (λ1, . . . , λn−2) with 1 ≤ λ1 <
· · · < λn−2 ≤ n, and

εI ∧ εI = ελ1 ∧ ελ1 ∧ · · · ∧ ελn−2 ∧ ελn−2 .

Now consider the wedge product

εα ∧ ε̄β ∧ εγ ∧ ε̄δ ∧ ωn−2.

Expanding ωn−2, the term εα∧ ε̄β∧εγ∧ ε̄δ survives only if it pairs with terms
from ωn−2 such that all n ε-type forms and ε̄-type forms are accounted
for exactly once. This follows from the antisymmetry of wedge products:
repetition of any ελ or ε̄λ results in the term vanishing. To compute explicitly,
we analyze the different cases. First, if α = β and γ = δ with α ̸= γ, we
obtain εα ∧ ε̄β = εα ∧ ε̄α and εγ ∧ ε̄δ = εγ ∧ ε̄γ . These contribute negatively
because the wedge product introduces a (−1)-sign when permuting (εγ , ε̄γ)
to align with the order in ωn−2. Thus, the term contributes −ωn. For the
second case we have α = δ and β = γ with α ̸= β. Here, εα ∧ ε̄β and εβ ∧ ε̄α
naturally align in ωn−2 without any sign issues. The contribution is positive
ωn. Finally, if (α, β, γ, δ) do not satisfy the above cases, there are repeated
indices or mismatched pairings, which result in the entire wedge product
vanishing due to antisymmetry or incomplete pairing in ωn−2.

Using Lemma 3.3.1, we obtain the following expressions for the first two
Chern classes when we wedge them with the fundamental form.

Proposition 3.3.2. Let (E, h) be a Hermitian vector bundle of rank r over
a compact Hermitian manifold (X, g) of dimension n, with associated funda-
mental form ω. Then the following identities hold:

c1(E,∇)2 ∧ ωn−2 =
1

4π2n(n− 1)

∑
α,γ

RαᾱRγγ̄ −Rαγ̄Rγᾱω
n,

c2(E,∇) ∧ ωn−2 =
1

8π2n(n− 1)

(∑
RαᾱRγγ̄ −Rαγ̄Rγᾱ

−
∑

RijαᾱRjiγγ̄ +
∑

Rijαγ̄Rjiγᾱ

)
ωn.

Proof. For the first identity, recall that

c1(E,∇) =
i

2π

∑
Ωj
j =

i

2π

∑
Rj

jαβ̄
εα ∧ ε̄β.

Therefore

c1(E,∇)2 = −
1

4π2

∑
Ωj
j ∧ Ωk

k = − 1

4π2

∑
Rj

jαβ̄
Rk

kγδ̄ε
α ∧ ε̄β ∧ εγ ∧ ε̄δ.
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Consider now

n(n− 1)
∑

Ωj
j ∧Ω

k
k ∧ωn−2 = n(n− 1)

∑
Rj

jαβ̄
Rk

kγδ̄ε
α ∧ ε̄β ∧ εγ ∧ ε̄δ ∧ωn−2.

By Lemma 3.3.1, the right-hand side simplifies to

−
∑

(RαᾱRγγ̄ −Rαγ̄Rγᾱ)ω
n

and so

c1(E,∇)2 ∧ ωn−2 =
1

4π2n(n− 1)

∑
(RαᾱRγγ̄ −Rαγ̄Rγᾱ)ω

n.

We proceed similarly for the latter identity. Recall that

c2(E,∇) = −
1

8π

∑
(Ωj

j ∧ Ωk
k − Ωj

k ∧ Ωk
j )

= − 1

8π

(∑
Rj

jαβ̄
Rk

kγδ̄ −R
j

kαβ̄
Rk

jγδ̄

)
εα ∧ ε̄β ∧ εγ ∧ ε̄δ.

Considering

n(n−1)
∑

(Ωj
j∧Ω

k
k−Ω

j
k∧Ω

k
j )∧ωn−2 = n(n−1)

(∑
Rj

jαβ̄
Rk

kγδ̄ −R
j

kαβ̄
Rk

jγδ̄

)
εα∧ε̄β∧εγ∧ε̄δ∧ωn−2

and using Lemma 3.3.1 again, we obtain

n(n−1)
∑

Rj

jαβ̄
Rk

kγδ̄ε
α∧ ε̄β ∧εγ ∧ ε̄δ ∧ωn−2 = −

∑
(RαᾱRγγ̄−Rαγ̄Rγᾱ)ω

n

as before and for the latter term

−n(n− 1)
∑

Rj

kαβ̄
Rk

jγδ̄ε
α ∧ ε̄β ∧ εγ ∧ ε̄δ ∧ ωn−2,

observe that the indices j and k are being summed over. By relabeling the
indices appropriately and applying the symmetry properties of the curvature
tensor, we can rewrite the sum as:∑

Rj

kαβ̄
Rk

jγδ̄ =
∑

Rjkαβ̄Rkjγδ̄.

Applying Lemma 3.3.1 once more, the second term becomes:

−n(n−1)
∑

Rj

kαβ̄
Rk

jγδ̄ε
α∧ε̄β∧εγ∧ε̄δ∧ωn−2 = −

∑
(RjkαᾱRkjγγ̄ −Rjkαγ̄Rkjγᾱ)ω

n.

Combining both contributions, we have:

n(n− 1)
∑

(Ωj
j ∧ Ωk

k − Ωj
k ∧ Ωk

j ) ∧ ωn−2 =

−
∑

(RαᾱRγγ̄ −Rαγ̄Rγᾱ)ω
n −

∑
(RjkαᾱRkjγγ̄ −Rjkαγ̄Rkjγᾱ)ω

n.

Then, divide by n(n− 1) to get:
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(Ωj
j ∧ Ωk

k − Ωj
k ∧ Ωk

j ) ∧ ωn−2 =

1

n(n− 1)

(
−
∑

RαᾱRγγ̄ −Rαγ̄Rγᾱ −
∑

RjkαᾱRkjγγ̄ −Rjkαγ̄Rkjγᾱ

)
ωn.

Substituting this into c2(E,∇) we finally obtain:

c2(E,∇) ∧ ωn−2 = − 1

8π2n(n− 1)

(∑
RαᾱRγγ̄ −Rαγ̄Rγᾱ

+
∑

RjkαᾱRkjγγ̄ −Rjkαγ̄Rkjγᾱ

)
ωn.

Proposition 3.3.3. Let (E, h) be a Hermitian vector bundle of rank r over
a compact Hermitian manifold (X, g). Then the following inequality holds:

r
∑

Rij̄αγ̄Rjīγᾱ −
∑
α,γ

Rαγ̄Rγᾱ ≥ 0.

Equality is achieved if and only if

rRi
jαβ̄ = δijRαβ̄,

Proof. To establish the inequality, we consider the trace-free part of the
curvature tensor. Define

T i
jαβ̄ = Ri

jαβ̄ −
1

r
δijRαβ̄,

where Rαβ̄ =
∑

j R
j

jαβ̄
is the Ricci curvature. Since T i

jαβ̄
is the trace-free

part, its squared sum satisfies

0 ≤
∑

T i
jαβ̄T

i
jαβ̄.

Expanding this expression, we have

0 ≤
∑(

Ri
jαβ̄ −

1

r
δijRαβ̄

)(
Ri

jαβ̄ −
1

r
δijRαβ̄

)
=
∑

Ri
jαβ̄R

i
jαβ̄ −

2

r

∑
δijR

i
jαβ̄Rαβ̄ +

1

r2

∑
δijδ

i
jRαβ̄Rαβ̄.

Since Rj

jαβ̄
= Rαβ̄ , this simplifies to:

0 ≤
∑

Ri
jαβ̄R

i
jαβ̄ −

2

r

∑
Rαβ̄Rαβ̄ +

1

r2

∑
Rαβ̄Rαβ̄.
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Reorganizing terms, we find:∑
Ri

jαβ̄R
i
jαβ̄ ≥

1

r

∑
Rαβ̄Rαβ̄.

Using the symmetry of the curvature tensor, the first term can be rewritten
as: ∑

Rij̄αγ̄Rjīγᾱ.

Similarly, the Ricci curvature term simplifies to:∑
Rαγ̄Rγᾱ.

Thus, we obtain:

r
∑

Rij̄αγ̄Rjīγᾱ −
∑

Rαγ̄Rγᾱ ≥ 0,

as required. Equality holds if and only if T i
jαβ̄

= 0, which implies:

Ri
jαβ̄ −

1

r
δijRαβ̄ = 0.

This gives:
rRi

jαβ̄ = δijRαβ̄,

which completes the proof.

We are now ready to prove the following theorem

Theorem 3.3.4 (Lübke). Let (E, h) be an Hermitian vector bundle of rank r
over a compact Hermitian manifold (X, g) of dimension n with fundamental
form ω. If (E, h) satisfies the weak Einstein condition, then∫

X

(
(r − 1)c1(E, h)

2 − 2rc2(E, h)
)
∧ ωn−2 ≤ 0,

and the equality holds if and only if (E, h) is projectively flat.

Proof. Proposition 3.3.2 yields the following formulae:

c1(E,∇)2 ∧ ωn−2 =
1

4π2n(n− 1)

∑
α,γ

RαᾱRγγ̄ −Rαγ̄Rγᾱω
n,

c2(E,∇) ∧ ωn−2 =
1

8π2n(n− 1)

(∑
RαᾱRγγ̄ −Rαγ̄Rγᾱ

−
∑

RijαᾱRjiγγ̄ +
∑

Rijαγ̄Rjiγᾱ

)
ωn.

Now consider (
(r − 1)c1(E, h)

2 − 2r c2(E, h)
)
.
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Substituting the above expressions and wedging with ωn−2, we obtain

(
(r − 1)c1(E, h)

2 − 2rc2(E, h)
)
∧ωn−2 =

1

4π2n(n− 1)

(∑
α,γ

Rαγ̄Rγᾱ − r
∑

Rij̄αγ̄Rjīγᾱ

)
ωn.

Proposition 3.3.3 asserts now that∑
α,γ

Rαγ̄Rγᾱ − r
∑

Rij̄αγ̄Rjīγᾱ ≤ 0

which implies (
(r − 1)c1(E, h)

2 − 2r c2(E, h)
)
∧ ωn−2 ≤ 0.

Finally, integrating over X yields the desired inequality:∫
X

(
(r − 1)c1(E, h)

2 − 2r c2(E, h)
)
∧ ωn−2 ≤ 0,

and the equality holds if and only if (E, h) is projectively flat.
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Chapter 4

Stability

The motivation for slope stability has its origins in the work of Mumford in
geometric invariant theory. We will follow closely the treatment of Friedman
[8] and Okonek, Schneider and Spindler [12].

4.1 Slope Stability

We will begin this section by defining the degree.

Definition 4.1.1. Let E be holomorphic vector bundle over a compact Käh-
ler manifold (X,ω). The degree of E is defined to be the integer

deg(E) :=

∫
X
c1(E) ∧ ωn−1,

where c1(E) is the first Chern class of E.

Definition 4.1.2. Let E be holomorphic vector bundle over a compact Käh-
ler manifold (X,ω). The slope of E is defined to be the rational number

µ(E) :=
deg(E)

rk(E)
.

Definition 4.1.3. A holomorphic vector bundle E over a compact Kähler
manifold (X,ω) is called slope stable (resp. slope semistable) if for all
proper, non-zero coherent subsheaves F ⊂ E with 0 < rk(F) < rk(E), the
following inequality is satisfied:

µ(F) < µ(E) (resp. ≤).

Remark 4.1.4. An alternative definition for the slope without the Kähler
condition would be to ask X to admit a polarization L → X and define
deg(E) = ⟨c1(E) · c1(E)n−1, [X]⟩.
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In Definition 4.1.11 it is important to note that stability must be checked
on coherent subsheaves and not only on subbundles. To illustrate why this
is, consider the complex projective plane P2 and a point p ∈ P2. Then
Ext1(Ip,OP2) ∼= C, where Ip is the ideal sheaf and so there is a non-trivial
extension

0 OP2 E Ip 0.

As H0(P2,KP2) = H0(P2,O(−3)) = 0, the Cayley–Bacharach property is
satisfied [9, Thm. 5.1.1] and so E is a vector bundle. Now the first Chern
class is additive over short exact sequences so

c1(E) = c1(OP2) + c1(Ip) = 0,

which yields that µ(E) = 0. However, OP2 is a subsheaf of E and µ(OP2) = 0
so µ(OP2) ̸< µ(E). That is, E is not stable. On the other hand, as OP2 and
Ip are stable of the same slope, E is semistable so any destabilizing subbundle
would first and foremost be a line bundle and have slope zero. If L ⊂ E is
such a line bundle, then L ∼= OP2 (The Picard variety of P2 is isomorphic to
Z). Note now that

Hom(OP2 , E) ∼= C.

Therefore, any morphism OP2 → E is, up to scalar, the composition with
the inclusion OP2 ↪→ E from the short exact sequence. In particular, the
image of OP2 → E is precisely this subsheaf, which is not a subbundle at the
point p, as the stalk of Ip fails to be locally free at p. Hence, although OP2

injects into E as a subsheaf, it is not a subbundle.
Note that for the determinant line bundle det(E), we have

c1(E) = c1(det(E)),

and so deg(E) = deg(det(E)). This observation allows us to generalize the
notion of the degree to arbitary coherent sheaves.

Definition 4.1.5. A coherent sheaf F on a complex manifold X is called
reflexive if F ∼= F∗∗.

The kernel of the natural map F → F∗∗ is exactly the torsion subsheaf
of F , and as the induced map Fx → F∗∗

x on stalks for any x ∈ X is an
isomorphism, it has a trivial kernel which in turn implies that F is torsion-
free. Moreover, due to a result by Scheja [13], the singular set of a reflexive
sheaf F has codimension at least three.

Definition 4.1.6. Let F be a coherent sheaf over a complex manifold X.
The determinant bundle of F is defined by

det(F) :=
r∧
F∗∗.
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Due to [12], reflexive sheaves of rank 1 are line bundles. Since the dual∧r F∗ is reflexive of rank 1, det(F) is a line bundle and so we define the
degree of F to be the degree of det(F).
Remark 4.1.7. As E ∼= E∗∗ holds for vector bundles, the generalized def-
inition does not affect Definition 4.1.1. In fact, this is the reason we are
considering the double dual instead of the dual only.

The slope µ(F) of a coherent sheaf F over a complex manifold is then
given analogously by

µ(F) = det(F)
rk(F)

.

Definition 4.1.8. A torsion-free coherent sheaf E over a compact Kähler
manifold (X,ω) is calle slope stable (resp. slope semistable) if for all
proper, non-zero coherent subsheaves F ⊂ E with 0 < rk(F) < rk(F), the
following inequality is satisfied:

µ(F) < µ(E) (resp. ≤).

Proposition 4.1.9. If

0 E F G 0,

is an exact sequence of coherent sheaves over a compact Kähler manifold
(X,ω), then

µ(F) = rk(E)
rk(F)

µ(E) + rk(G)
rk(F)

µ(G).

Proof. Recall that the first Chern class is additive over short exact sequences.
That is

c1(F) = c1(E) + c1(G),

and similarly for the rank. These give

(rk(E) + rk(G))µ(F) = deg(F)
= deg(E) + deg(G)
= rk(E)µ(E) + rk(F)µ(F),

which yields

µ(F) = rk(E)
rk(F)

µ(E) + rk(G)
rk(F)

µ(G).

Proposition 4.1.9 allows us to restate stability and semistability of F in
terms of quotients instead of subsheaves.
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Proposition 4.1.10. Let F be a torsion-free coherent sheaf over a compact
Kähler manifold (X,ω). Then F is stable (resp. semistable) if and only if

µ(F) ≤ µ(Q) (resp. ≤)

holds for any quotient sheaf Q with positive rank.

Proposition 4.1.11. Let E and F be semistable coherent sheaves over a
compact Kähler manifold (X,ω). Then:

(i) If µ(E) > µ(F), we have Hom(E ,F) = 0.

(ii) If µ(E) = µ(F) and if E is stable, we have

rk(E) = rk(im(f)),

and f is injective unless f = 0.

(iii) If µ(E) = µ(F) and if F is µ-stable, we have

rk(F) = rk(im(f)),

and f is generically surjective unless f = 0.

Proof. (i) Suppose that f is non-zero and consider the sequence

E im(f) F .

Since E and F are µ-semistable, we obtain a contradiction from

µ(E) ≤ µ(im(f)) ≤ µ(F) < µ(E).

(ii) Suppose that f is non-zero and that rk(E) > rk(im(f)). Then since E
is stable, we obtain

µ(im(f)) ≤ µ(F) = µ(E) < µ(im(f)),

which is impossible.

(iii) As F is stable, if rk(F) > rk(im(f)), then

µ(im(f)) < µ(F) = µ(E) ≤ µ(im(f)),

which is again impossible.

Corollary 4.1.12. Let E and F be semistable vector bundles over a compact
Kähler manifold (X,ω) of the same rank and degree. Then if E or F is stable,
any non-zero morphism f : E → F is an isomorphism.
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Proof. The morphism f is injective by Proposition 4.1.11. The induced
morphism det(f) : det(E) → det(F ) is also non-zero. Consider det(f) as
a holomorphic section of the line bundle Hom(det(E),det(F )) = det(E)∗ ⊗
det(F ) and note that this has degree 0. Recall now that any holomorphic
section of a degree 0 holomorphic line bundle over a compact Kähler manifold
has no zeroes unless it vanishes identically. It follows that det(f) is an
isomorphism and thus f is an isomorphism.

Corollary 4.1.13. If F is a semistable sheaf over a compact Kähler man-
ifold (X,ω) such that deg(F) < 0, then F admits no non-zero holomorphic
sections.

Proof. Note that any non-zero holomorphic section s ∈ H0(X,F) yields a
map f : OX → F . This gives maps

OX im(f) F ,

and 0 = µ(OX) ≤ µ(im(f)) ≤ µ(F) < 0 yielding a contradiction.

Definition 4.1.14. A coherent sheaf F on a complex manifold X is called
simple if

End(F) ∼= C.

Corollary 4.1.15. If E is a stable vector bundle over a compact Kähler
manifold (X,ω), then End(E) ∼= C. That is, E is simple.

Proof. Consider f : E → E and let λ be an eigenvalue of the map f : Ex →
Ex on fibers for x ∈ X. Suppose that f ̸= λ idE . Note that since E is stable,
and f − λ idE is a non-zero morphism from E to E, Corollary 4.1.12 implies
that f − λ idE is an isomorphism. However, an invertible linear map cannot
have 0 eigenvalue so

f = λ idE .

Proposition 4.1.16. Let E and F be torsion-free coherent sheaves over a
compact Kähler manifold (X,ω). Then E ⊕ F is semistable if and only if E
and F are both semistable with equal slopes.

Proof. Suppose that E and F are semistable with slope λ. Then

µ(E ⊕ F) = deg(E) + deg(F)
rk(E) + rk(F)

=
rk(E)λ+ rk(F)λ
rk(E) + rk(F)

= λ.

Let G be a subsheaf of E ⊕ F , set G1 = G ∩ (E ⊕ 0) and denote by G2 the
image of G under E ⊕ F → F . Since E and F are µ-semistable,

deg(Gi) ≤ λ rk(Gi).
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It follows that

µ(G) = deg(G1) + deg(G2)
rk(G1) + rk(G2)

≤ λ = µ(E ⊕ F).

Conversely, if E ⊕F is µ-semistable, If G is now a subsheaf of E or F , it is a
subsheaf of the direct sum E ⊕ F also. Now as E and F are both quotients
and subsheaves of E ⊕ F , we obtain equality for the slopes and

µ(G) ≤ µ(E ⊕ F) = µ(E) = µ(F).

Proposition 4.1.17. Let

0 E F G 0

be a short exact sequence of coherent sheaves on (X,ω). Then the following
equivalences hold:

µ(E) < µ(F) ⇐⇒ µ(F) < µ(G),

and
µ(E) > µ(F) ⇐⇒ µ(F) > µ(G).

4.2 The Harder–Narasimhan Filtration

In this section we establish the existence and uniqueness of the Harder–Narasimhan
filtration for any torsion-free coherent sheaf on a compact Kähler manifold.
This filtration decomposes an arbitrary sheaf into a tower of semistable quo-
tients with strictly decreasing slopes. It provides a canonical way to mea-
sure and compare the degrees of instability of subsheaves, and underlies
many deep results in the theory of moduli of sheaves and in the analysis of
Hermite–Einstein metrics. We begin by showing that the slopes of all sub-
sheaves are uniformly bounded above, which allows us to pick out a maximal
slope component. Iterating this construction yields the full filtration, whose
uniqueness follows from a simple slope-comparison argument.

Lemma 4.2.1 (Boundedness of slopes). There exists an integer m0 (depend-
ing only on F and the Kähler form ω) such that

µ(G) ≤ m0 for every coherent subsheaf G ⊂ F .

Proof. Recall that every coherent torsion-free sheaf is locally a subsheaf of a
trivial bundle of the same rank so it suffices to bound the slopes of subsheaves
of a holomorphic vector bundle E of rank r. Fix a Hermitian metric h
on E. If L ⊂ E is a holomorphic line subbundle, choose a local unitary
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frame {e1, . . . , er} so that e1 spans L. Writing the curvature of the Chern
connection of L as

Sαβ̄ = R1
1αβ̄ −

r∑
λ=2

Aλ
1α Ā

λ
1β,

where A is the second fundamental form, we have

∑
Sαᾱ =

∑
α

R1
1αα̃−

∑
α·λ

∣∣∣Aλ
1α

∣∣∣2 ≦∑
α

∣∣R1
1αx̄

∣∣ ≦∑
t,α

∣∣R1
1αα̃

∣∣ ≦ (nr ·∑
t,α

∣∣R1
tαᾱ

∣∣2)1/2

which is independent of L. As

deg(L) =

∫
X

i

2π

∑
Sαβ̄ε

α ∧ εβ ∧ ωn−1 =

∫
X

1

2nπ

(∑
Sαᾱ

)
ωn,

we note that the degree is bounded below by a constant q0(E) only depending
on E and ω. Considering the higher rank case, if F ⊂ E has rank p, then
detF ↪→ ΛpE is a line subbundle. Applying the above bound to ΛpE shows
µ(F ) = 1

p deg(detF ) ≤
1
p q0(Λ

pE). Setting

m0 = max
1≤p≤r

{
1
p q0

(
p∧
E

)}

gives the desired uniform bound.

Lemma 4.2.2 (Maximal destabilising subsheaf). Let (X,ω) be a compact
Kähler manifold and let F be a torsion-free coherent sheaf on X of positive
rank. Then there exists a unique coherent subsheaf

F1 ⊂ F ,

often called the maximal destabilising subsheaf, which satisfies all of the fol-
lowing properties:

(i) The quotient F/F1 is torsion-free.

(ii) For every coherent subsheaf G ⊂ F ,

µ(G) ≤ µ(F1).

(iii) If G ⊂ F satisfies µ(G) = µ(F1), then

rkG ≤ rkF1.

Consequently, F1 is semistable.
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Proof. By Lemma 4.2.1 the set {µ(G) | G ⊂ F} is bounded above, say by
m0. Choose a subsheaf

F1 ⊂ F with µ(F1) = sup{µ(G)},

and among those of slope µ(F1) pick one of maximal rank. Its saturation is
still denoted F1, and after saturation, F/F1 is torsion-free, so (i) holds by
construction, and (ii) is built into the choice of maximal rank.

Suppose a proper subsheaf H ⊂ F1 violates semistability. Then either
µ(H) > µ(F1) or µ(H) = µ(F1) with rk(H) > rk(F1), both contradict
property (ii) or the maximal rank property. Hence F1 is semistable.

Regarding uniqueness, assume another subsheaf F ′
1 ⊂ F also satisfies (i)

and (ii). If F1 ⊂ F ′
1 and F ′

1 ⊂ F1 both failed, one of them is not contained
in the other; without loss of generality, assume F1 ̸⊂ F ′

1. Let

π : F → F/F ′
1

be the natural projection. Because F1 ̸⊂ F ′
1, its image π(F1) is a nonzero

subsheaf of F/F ′
1. Consider the pullback π−1(π(F1)); we have an exact

sequence

0 F ′
1 π−1(π(F1)) π(F1) 0

and, inside F1,

0 G F1 π(F1) 0

where G := ker(F1 → π(F1)). Because F1 is semistable, the quotient satisfies

µ(π(F1)) ≥ µ(F1). (1)

Next, apply (i) and (ii) to the subsheaf

K := π−1(π(F1)).

Since rkK > rkF ′
1 (because π(F1) ̸= 0), condition (ii) forces a strict inequal-

ity
µ(K) < µ(F ′

1).

Write r′ := rkF ′
1, s := rkπ(F1), and degrees deg′ and degπ for F ′

1 and
π(F1),

µ(K) = deg′+degπ
r′ + s

<
deg′

r′
= µ(F ′

1).

Clearing denominators yields

degπ r
′ < deg′ s, i.e. µ(π(F1)) < µ(F ′

1). (2)
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Combining (1) and (2) gives

µ(F1) ≤ µ(π(F1)) < µ(F ′
1) = µ(F1),

a contradiction. Hence our assumption was impossible, so F1 ⊂ F ′
1. A

symmetric argument shows F ′
1 ⊂ F1, therefore F1 = F ′

1.

Theorem 4.2.3 (Harder–Narasimhan). Let F be a torsion-free coherent
sheaf over a compact Kähler manifold (X,ω). Then there exists a unique
filtration by subsheaves

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = F ,

such that, for 1 ≤ i ≤ n, the quotients Fi/Fi−1 are semistable of slope µi
satisfying

µ1 > µ2 > · · · > µn.

Proof. Set F0 = 0. Having constructed

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk

with each successive quotient Qi = Fi/Fi−1 ω-semistable, we proceed as
follows: The quotient F/Fk is torsion-free, so by Lemma 4.2.2 it has a
unique maximal destabilising subsheaf

Fk+1 ⊂ F/Fk.

Pull this back under the natural projection π : F → F/Fk:

Fk+1 = π−1(Fk+1) ⊂ F .

By construction, Fk ⊂ Fk+1, the quotient Fk+1/Fk
∼= Fk+1 is semistable of

slope µ(Fk+1/Fk), and ω-saturation ensures F/Fk+1 is torsion-free.
Each step strictly decreases either the rank of the quotient F/Fk or its

slope, but rank cannot drop below zero, so after finitely many steps Fn = F .
This yields the desired filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .

By construction each Fi/Fi−1 is the maximal-slope subsheaf of F/Fi−1, so

µ(Fi/Fi−1) > µ(Fi+1/Fi),

giving µ1 > µ2 > · · · > µn. Uniqueness of each successive Fi ⊂ F/Fi−1 by
Lemma 4.2.2 forces the entire filtration to be unique. This completes the
proof of the Harder–Narasimhan filtration.
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4.3 Stability for Hermite–Einstein Vector Bundles

Our goal in this section is to prove that the Hermite–Einstein condition on
an indecomposable holomorphic vector bundle (E, h) over a compact Kähler
manifold (X,ω) is sufficient for E to be stable.

We will begin this section by introducing the second fundamental form
and use it to present the fundamental principle that “curvature decreases in
holomorphic subbundles”.

First, we will recall how quotient bundles are defined.

Definition 4.3.1. Let E → X be a holomorphic vector bundle over a com-
plex manifold X, and let F ⊂ E be a holomorphic subbundle. Then the
quotient bundle E/F is defined as the complex manifold obtained by taking
the fiberwise quotient of Ex by the subspace Fx for each x ∈ X. More pre-
cisely, for each x ∈ X, consider the fiber Ex and its subspace Fx, and let
(E/F )x := Ex/Fx. The collection {(E/F )x | x ∈ X} forms a holomorphic
vector bundle E/F over X whose dimension at each x is dim(Ex)−dim(Fx).

Note that any Hermitian metric h on E restricts naturally to a Hermitian
metric on the holomorphic subbundle F . Indeed, since Fx ⊂ Ex is a subspace
for each x ∈ X, and the metric hx on Ex is a positive-definite inner product,
its restriction to Fx remains positive-definite. Thus, hF := h|F defines a
Hermitian metric on F .

Similarly, given a Hermitian metric h on E, one would like to induce a
Hermitian metric on the quotient bundle E/F . For this, one can choose a
smooth splitting

E = F ⊕ F⊥,

where F⊥ is the orthogonal complement of F with respect to h. Note that F⊥

need not be a holomorphic subbundle in general. Despite this, F⊥ provides
a smooth isomorphism of complex vector bundles

E/F ∼= F⊥.

Via this identification, h induces a Hermitian metric on E/F . If, under addi-
tional conditions, F⊥ happens to be a holomorphic subbundle (for example,
if there is a holomorphic splitting), then E/F inherits a holomorphic struc-
ture compatible with this metric. Otherwise, E/F still inherits a Hermitian
metric as a smooth complex vector bundle. This construction allows us to
consider the Chern connections associated with these sub- and quotient bun-
dles. If ∇ is the Chern connection associated to (E, h), then by restricting
it to F we obtain a Chern connection on (F, hF ), and by projecting it onto
F⊥, we obtain a Chern connection on (E/F, hE/F ).

Lemma 4.3.2. Let (E, h) → X be a holomorphic vector bundle equipped
with a Hermitian metric h, and let F ⊂ E be a holomorphic subbundle.
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Consider the direct sum decomposition induced by h:

E = F ⊕ F⊥,

where F⊥ is the h-orthogonal complement of F . Let ∇ be the Chern connec-
tion associated with (E, h). Define a connection ∇F on F by

∇F := πF ◦ ∇,

where πF : E → F is the projection onto F corresponding to the chosen
decomposition. Then ∇F is the Chern connection on (F, hF ).

Proof. Recall that the Chern connection ∇ on E is characterized by two
properties:

(i) (∇0,1) = ∂̄E , the (0, 1)-component coincides with the holomorphic
structure of E.

(ii) ∇ is compatible with the Hermitian metric h, i.e., (∇h) = 0.

Since F is a holomorphic subbundle, it inherits a holomorphic structure ∂̄F
defined by the restriction of ∂̄E . Let s ∈ Γ(U,F ) be a smooth local section
of F (here Γ(U,F ) denotes the space of smooth sections on U ⊂ X of the
subbundle F ). We have:

(∇F )0,1s = (πF ◦ ∇)0,1s = πF (∇0,1s) = πF (∂̄Es).

But since s is actually a section of F , we have ∂̄Es ∈ A0,1(U,F ), that is, the
(0, 1)-forms with values in E that come from the holomorphic structure will
actually lie in F , because F is a holomorphic subbundle. Thus,

∂̄Es = ∂̄F s.

Since ∂̄F s ∈ A0,1(U,F ), applying the projection πF does nothing:

πF (∂̄Es) = ∂̄F s.

Therefore,
(∇F )0,1s = ∂̄F s.

This shows that the (0, 1)-component of ∇F coincides with the holomorphic
structure of F . In other words, ∇F is compatible with the complex structure
on F . Next, we must show that ∇F is compatible with the metric hF . Since
hF (s, t) = h(s, t) for all s, t ∈ Γ(U,F ), we need to verify that:

dhF (s, t) = hF
(
∇F s, t

)
+ hF

(
s,∇F t

)
.

Since hF is the restriction of h, we have hF (s, t) = h(s, t) for s, t ∈ Γ(U,F ).
Thus:

dhF (s, t) = dh(s, t).
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Also, because ∇ is the Chern connection on E, it satisfies metric compati-
bility with h:

dh(s, t) = h(∇s, t) + h(s,∇t).

We obtain:

dhF (s, t) = h(∇s, t) + h(s,∇t) = hF
(
∇F s, t

)
+ hF

(
s,∇F t

)
.

Thus,∇F is compatible with the metric. Together with the fact that (∇F )0,1 =
∂̄F , we conclude that ∇F is the unique Chern connection on (F, hF ).

Let (E, h) → X again be a holomorphic vector bundle over a complex
manifold equipped with a Hermitian metric h. Let S ⊂ E be a holomorphic
subbundle and Q = E/S the quotient bundle. Recall that Q is isomorphic
(as a smooth vector bundle) to the orthogonal complement S⊥ of S in E.
We have the datum of three Hermitian bundles all of which therefore admit
Chern connections ∇,∇S and ∇Q. Consider now the short exact sequence

0 S E Q 0.

The Hermitian metric h on E defines a smooth splitting

E ∼= S ⊕ S⊥,

and from Lemma 4.3.2, we know that

∇S = πS ◦ ∇.

Consider now a local section s ∈ Γ(U, S) ⊂ Γ(U,E), then

∇s ∈ Γ(T ∗X ⊗ (S ⊕ S⊥)),

so we have a decomposition

∇s = Φ(s) +A(s)

for Φ(s) ∈ Γ(U, S) and A(s) ∈ Γ(U, S⊥). Notice now that

∇Ss = πS(∇s) = πS(Φ(s)) + πS(A(s)) = Φ(s)

so Φ = ∇S . Moreover
A = ∇−∇S

maps Γ(U, S) into Γ(U, S⊥), is a difference of two connections and is therefore
C∞-linear i.e. A ∈ A1(U,Hom(S, S⊥)). Finally, note that

∂̄E(s) = ∂̄S(s) ∈ A0,1(U, S)

and thus
A0,1 = ∇0,1 − (∇S)0,1 = ∂̄E − ∂̄S = ∂̄S − ∂̄S = 0
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so in fact, A ∈ A1,0(U,Hom(S, S⊥)). The operator A is called the second
fundamental form of S in E.

We can now play the same game with the quotient Q, using the identifi-
cation with S⊥. We define operators Ψ, B : Γ(U, S⊥)→ Γ(U, T ∗X ⊗ S⊥) by
the decomposition

∇s = Ψ(s) +B(s),

for s ∈ Γ(U, S⊥). Ψ ends up as the connection ∇Q, but B is this time in
the space A0,1(U,Hom(S⊥, S)) and is the negative of the adjoint of A, i.e.
B = −A∗. To see these, note that for s ∈ Γ(U, S) and t ∈ Γ(U, S⊥) we have

0 = dh(s, t)

= h(∇s, t) + h(s,∇t)
= h

(
∇Ss+As, t

)
+ h

(
s,∇Qt+Bt

)
= h

(
∇Ss, t

)
+ h (As, t) + h

(
s,∇Qt

)
+ h (s,Bt)

= h(As, t) + h(s,Bt).

So h(As, t) = −h(s,Bt), i.e. B = −A∗ ∈ A0,1(U,Hom(S⊥, S)).
Putting these together, the connection matrix ωE for E takes the form

ωE =

(
ωS −A∗

A ωQ

)
.

This gives us directly the curvature matrix from the second structural equa-
tion

ΩE = dωE + ωE ∧ ωE

=

(
dωS −dA∗

dA dωQ

)
+

(
ωS −A∗

A ωQ

)
∧
(
ωS −A∗

A ωQ

)
=

(
dωS −dA∗

dA dωQ

)
+

(
ωS ∧ ωS −A∗ ∧A −ωS ∧A∗ −A∗ ∧ ωQ

A ∧ ωS + ωQ ∧A −A ∧A∗ + ωQ ∧ ωQ

)
=

(
dωS + ωS ∧ ωS −A∗ ∧A −dA∗ − ωS ∧A∗ −A∗ ∧ ωQ

dA+A ∧ ωS + ωQ ∧A dωQ −A ∧A∗ + ωQ ∧ ωQ

)
=

(
ΩS −A∗ ∧A −dA∗ − ωS ∧A∗ −A∗ ∧ ωQ

dA+A ∧ ωS + ωQ ∧A ΩQ −A ∧A∗

)
.

This yields

ΩS = ΩE |S +A∗ ∧A,
ΩQ = ΩE |Q +A ∧A∗.

Definition 4.3.3 (Griffiths Positivity). Let (E, h) → X be a holomorphic
vector bundle over a complex manifold X, equipped with a Hermitian metric
h. Let ∇ denote the Chern connection associated to (E, h), and let Ω ∈
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A1,1(End(E)) be its curvature tensor. The curvature operator Ω is said to
be Griffiths positive if for any non-zero local holomorphic section s of E and
v ∈ T 1,0X one has

h(Ω(s), s)(v, v̄) > 0.

We write Ω > 0 if Ω is positive and analogously in the other cases.
Consider now the second fundamental form A ∈ A1,0(Hom(S, S⊥)). Since
this is of type (1, 0) we have

A ∧A∗ ≥ 0,

which yields

ΩS = ΩE |S +A∗ ∧A ≤ ΩE |S ,

i.e. the curvature decreses in holomorphic subbundles. Similarly

ΩQ = ΩE |Q +A ∧A∗ ≥ ΩE |Q,

i.e. curvature increases in holomorphic quotient bundles. The main result
we aim to prove is now a simple application of this principle.

Proposition 4.3.4. Suppose E → (X,ω) is an indecomposable holomor-
phic vector bundle over a compact Kähler manifold that admits a Hermite–
Einstein metric h. Then E is slope stable with respect to holomorphic sub-
bundles S ⊂ E.

Proof. Let S ⊂ E be a subbundle and consider the smooth direct sum de-
composition E ∼= S ⊕ Q, where Q = E/S. Recall that in this case, the
curvature ΩE of E is given by

ΩE =

(
ΩS −A∗ ∧A −dA∗ − ωS ∧A∗ −A∗ ∧ ωQ

dA+A ∧ ωS + ωQ ∧A ΩQ −A ∧A∗

)
.

The End(S)-component of the Hermite–Einstein equation reads as

iΛ(ΩS −A∗ ∧A) = iΛΩS − iΛ(A∗ ∧A) = λ idS .

Tracing over this gives

i tr(ΛΩS)− i tr(Λ(A∗ ∧A)) = λ rk(S). (4.1)

Now
−i tr(Λ(A∗ ∧A)) = tr(Λ(iA ∧A∗)) = |A|2,
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and so integrating (1) yields∫
X
i tr(ΛΩS)ω

n +

∫
X
|A|2ωn = i

∫
X
Λ tr(ΩS)ω

n + ∥A∥2

= ni

∫
X
tr(ΩS) ∧ ωn−1 + ∥A∥2

= 2πn

∫
X
c1(S) ∧ ωn−1 + ∥A∥2

= 2πndeg(S) + ∥A∥2

= λ rk(S) vol(X).

Also,

λ =
2πn

vol(X)
µ(E),

so we have
2πndeg(S) + ∥A∥2 = 2πn rk(S)µ(E).

Note that the assumption that E is indecomposable forces ∥A∥2 > 0 as
otheriwse we would have a holomorphic split E = S ⊕Q. This gives

2πn rk(S)µ(E) = 2πndeg(S) + ∥A∥2 > 2πndeg(S),

i.e.
µ(E) > µ(S).

4.4 The Kobayashi–Hitchin Correspondence

In the previous section we saw that any indecomposable holomorphic vec-
tor bundle admitting a Hermite–Einstein metric must be stable. We now
turn to the converse implication, namely that polystability guarantees the
existence of a Hermite–Einstein metric. This equivalence is known as the
Kobayashi–Hitchin correspondence, and lies at the crossroads of complex
differential geometry and algebraic geometry.

Originating in independent conjectures of Kobayashi and Hitchin in the
late 1970s, and established in full generality by Donaldson and Uhlenbeck–Yau,
the correspondence asserts that on a compact Kähler manifold (M,ω) a holo-
morphic vector bundle E admits a Hermite–Einstein metric if and only if
E is polystable. In particular, when E is indecomposable, polystability is
equivalent to stability, and so one obtains a precise bridge between an alge-
bro–geometric criterion (slope stability) and an analytic one (the Hermite–
Einstein PDE).

We have already established in Proposition 4.3.4 that an indecomposable
Hermite–Einstein bundle must be stable. The converse requires the deep
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analytical machinery developed by Donaldson and Uhlenbeck–Yau. Let us
state the key components:

Theorem 4.4.1. Let E be a holomorphic vector bundle on a compact Kähler
manifold (X,ω). If E is stable, then E admits a Hermite–Einstein metric,
which is unique up to a constant multiple.

Combining our previous results with Theorem 4.4.1, we obtain:

Corollary 4.4.2 (The Kobayashi–Hitchin Correspondence). An indecom-
posable holomorphic vector bundle E over a compact Kähler manifold (X,ω)
admits a Hermite–Einstein metric if and only if it is stable.

We present a brief overview of the proof strategy developed by Simpson
[14], which combines the approaches of Donaldson and Uhlenbeck–Yau. The
key idea is to use the heat flow method to deform an arbitrary Hermitian
metric towards a Hermite–Einstein metric.

Let E be a stable holomorphic vector bundle on (X,ω). Fix a background
Hermitian metric h0 on E and consider the evolution equation

dht
dt
h−1
t = − (iΛωFht − λ idE) , (4.2)

where ht is a smooth family of Hermitian metrics on E, Fht is the curvature
of the Chern connection associated to ht, and λ = 2πn

vol(X)µ(E).
The right-hand side of (4.2) measures the failure of ht to satisfy the

Hermite–Einstein condition. Using the theory of parabolic partial differential
equations, one can show:

(i) Short-time existence: There exists a solution to (4.2) on some in-
terval [0, T ).

(ii) Long-time existence: Using a priori estimates, the solution can be
extended to [0,∞).

(iii) Convergence analysis: Either the solution converges to a Hermite–
Einstein metric as t→∞, or one can extract a destabilizing subsheaf,
contradicting the stability of E.

The crucial analytical input is the following regularity result:

Definition 4.4.3. A weakly holomorphic subbundle of E is an L2 sec-
tion π of End(E) with L2 first-order weak derivatives satisfying

π = π∗ = π2 and (idE −π) ◦ ∂̄π = 0,

where π∗ denotes the adjoint with respect to h0.
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The conditions ensure that π is a projection operator compatible with
the holomorphic structure. The technical achievement of Uhlenbeck–Yau is:

Theorem 4.4.4 (Uhlenbeck–Yau Regularity). Any weakly holomorphic sub-
bundle of a holomorphic vector bundle over a compact Kähler manifold cor-
responds to a coherent subsheaf in the ordinary sense.

This allows one to convert analytical obstructions to convergence into
algebraic destabilizing subsheaves, completing the proof by contradiction
when E is stable.
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Chapter 5

The Atiyah Class

5.1 Atiyah Class via Čech Cocycles

Let X be a complex manifold (or more generally a paracompact topological
space) and let F be a sheaf of OX -modules on X.

Definition 5.1.1. An open cover of X is a family U = {Ui}i∈I of open
subsets of X such that

X =
⋃
i∈I

Ui.

For any finite ordered tuple (i0, . . . , ip) we set

Ui0···ip = Ui0 ∩ Ui1 ∩ · · · ∩ Uip .

Definition 5.1.2 (Čech p-Cochains). The group of Čech p-cochains of F
with respect to the cover U is

Cp(U ,F) =
∏

(i0<···<ip)

F
(
Ui0···ip

)
.

An element φ ∈ Cp(U ,F) is a collection {φ i0···ip} with φ i0···ip ∈ F(Ui0···ip).

Definition 5.1.3 (Čech Differential). The Čech differential δ : Cp(U ,F)→
Cp+1(U ,F) is defined by

(δφ) i0···ip+1 =

p+1∑
k=0

(−1)k φ i0···îk···ip+1

∣∣∣
Ui0···ip+1

,

where the hat means omission of that index and the restriction is to the
smaller intersection.

Definition 5.1.4 (Cocycles, Coboundaries).

(i) A p-cochain φ ∈ Cp(U ,F) is a cocycle if δφ = 0. The subgroup of such
is denoted Zp(U ,F).
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(ii) A p-cochain is a coboundary if there exists ψ ∈ Cp−1(U ,F) with φ =
δψ. The subgroup of these is Bp(U ,F).

Definition 5.1.5 (Čech Cohomology). The Čech cohomology of the cover
U is the quotient

Ȟp(U ,F) = Zp(U ,F)
Bp(U ,F)

.

Passing to the direct limit over all open covers of X gives the sheaf coho-
mology Ȟp(X,F), which for good covers agrees with the derived functor
cohomology Hp(X,F).

Example 5.1.6. A Čech 1-cocycle is a collection {αij} ∈ Z1(U ,F) with
αij ∈ F(Ui ∩ Uj) satisfying

αjk − αik + αij = 0 on Ui ∩ Uj ∩ Uk.

Two such cocycles differ by a coboundary αij = βj − βi for some {βi} ∈
C0(U ,F).

Remark 5.1.7. In practice one often works with a good cover (each finite
intersection is Stein or contractible), so that Čech cohomology computes the
sheaf cohomology Ȟp(U ,F) ∼= Hp(X,F).

We now specialize to the case F = Ω1
X ⊗OX

End(E) and explain how
the Atiyah class of a holomorphic vector bundle E → X arises as a Čech
1-cocycle.

Now let E → X be a holomorphic vector bundle and denote by E its sheaf
of holomorphic sections. By Definition 1.2.6, a holomorphic connection on
E is a C–linear map of sheaves

∇ : E → Ω1
X ⊗ E ,

which satisfies the Leibniz rule. Although a global ∇ need not exist, locally
on each member of a good cover U = {Ui} one can always choose

∇i : E
∣∣
Ui
→ Ω1

X ⊗ E
∣∣
Ui

a holomorphic connection. On overlaps Uij = Ui ∩ Uj , the difference

αij = ∇j −∇i : E|Uij → Ω1
X ⊗ E|Uij

is OX–linear, hence defines

αij ∈ Γ
(
Uij , Ω

1
X ⊗ End(E)

)
.

One checks immediately that on triple overlaps

αjk − αik + αij = 0 in Γ
(
Ui ∩ Uj ∩ Uk, Ω

1
X ⊗ End(E)

)
,
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so {αij} is a Čech 1-cocycle in Z1(U ,Ω1
X ⊗End(E)). Different choices of the

local ∇i change {αij} by a coboundary in B1, and hence define a well-defined
class

A(E) =
[
{αij}

]
∈ Ȟ1

(
U , Ω1

X ⊗ End(E)
) ∼= H1

(
X, Ω1

X ⊗ End(E)
)
.

The essential thing to note here is that A(E) acts as an obstruction for the
existence of a holomorphic connection on E.

Definition 5.1.8. The Atiyah class of the holomorphic bundle E is the
cohomology class

A(E) ∈ H1
(
X,Ω1

X ⊗ End(E)
)

represented by the Čech cocycle {αij}.

Proposition 5.1.9. A holomorphic vector bundle E admits a holomorphic
connection if and only if its Atiyah class is trivial.

Proof. If E admits a holomorphic connection ∇, then ∇ restricts to each
∇i, hence ∇j −∇i = 0 and the cocycle is trivial. Conversely, suppose that
A(E) = 0. Pick local trivializations φi : E|Ui → Ui × Ck and note that the
local connections are of the form ∇i = ∂ + Ai, for Ai a matrix of 1-forms.
These glue to a global holomorphic connection if

φ−1
i ◦ (∂ +Ai) ◦ φi = φ−1

j ◦ (∂ +Aj) ◦ φj .

Equivalently if

φ−1
i ◦ ∂ ◦ φi − φ−1

j ◦ ∂ ◦ φj = φ−1
j ◦Aj ◦ φj − φ−1

i ◦Ai ◦ φi.

Note that

φ−1
i ◦ ∂ ◦ φi − φ−1

j ◦ ∂ ◦ φj = φ−1
j ◦

(
φ−1
ij ∂(φij)

)
◦ φj .

Thus the gluing condition becomes

φ−1
ij ∂φij = φ−1

j Aj φj − φ−1
i Ai φi.

But the left-hand side is exactly the Čech cocycle representing A(E), and
the right-hand side is the coboundary

(φ−1
j Aj φj)− (φ−1

i Ai φi) = δ (φ−1
i Ai φi)ij .

Since this cocycle is a coboundary by assumption, it follows that we can
choose the local Ai so that the local holomorphic connections ∇i = ∂ +
Ai satisfy the gluing condition. Hence they define a global holomorphic
connection on E, completing the proof.
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The following theorem gives a geometric interpretation for the Atiyah
class.

Theorem 5.1.10. Let (E, h) be a holomorphic vector bundle equipped with
a Hermitian metric h, and let ∇ denote its Chern connection. Then

[F∇] = A(E) ∈ H1(X,Ω1
X ⊗ End(E)),

where [F∇] denotes the Dolbeault cohomology class of F∇.

Proof. The key to relating the curvature F∇ of the Chern connection with
the Čech cocycle representing the Atiyah class A(E) is the double complex
which connects Čech and Dolbeault resolutions. This allows us to identify
the Dolbeault cohomology class of F∇ with the Čech class of the cocycle
{αij} described above.

Let U = {Ui} be a good open cover of X trivializing E, with local
holomorphic trivializations ψi : E|Ui → Ui ×Cr. On each Ui, the Hermitian
metric h is given by a positive-definite Hermitian matrix Hi, so that for
sections s, t of E over Ui,

h(s, t) = ⟨ψi(s), Hiψi(t)⟩Cr .

The Chern connection ∇ is the unique connection compatible with both the
holomorphic structure and the Hermitian metric. On Ui, it is expressed as

∇ = ∂ + ∂̄ +Ai

where Ai is a matrix of 1-forms, and the (1, 0)-part of Ai is given by

Ai = H−1
i ∂Hi

so that ∇′ = ∂ +Ai is compatible with h.
The curvature F∇ of the Chern connection is a global (1, 1)-form with

values in End(E), and locally on Ui is given by

F∇|Ui = ∂̄(H−1
i ∂Hi)

in the trivialization ψi. Consider now the Čech–Dolbeault double complex.
Under the Dolbeault–Čech correspondence, the Dolbeault cohomology class
[F∇] is mapped to the Čech cocycle{

Ui, ψ
−1
i ◦

(
∂̄(H−1

i ∂Hi)
)
◦ ψi

}
and its Čech coboundary δ0 is given by

δ0 (F∇) =
{
Uij , ψ

−1
j ◦

(
∂̄(H−1

j ∂Hj)
)
◦ ψj − ψ−1

i ◦
(
∂̄(H−1

i ∂Hi)
)
◦ ψi

}
.
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But since ∂̄ commutes with restrictions and the transition functions ψij =
ψj ◦ ψ−1

i : Uij → GL(r,C) are holomorphic, we have

ψ−1
j ◦ (H

−1
j ∂Hj) ◦ ψj = ψ−1

ij (H−1
i ∂Hi)ψij + ψ−1

ij ∂ψij .

Therefore,

ψ−1
j ◦ (H

−1
j ∂Hj) ◦ ψj − ψ−1

i ◦ (H
−1
i ∂Hi) ◦ ψi

=
(
ψ−1
ij (H−1

i ∂Hi)ψij + ψ−1
ij ∂ψij

)
− (H−1

i ∂Hi)

= ψ−1
ij ∂ψij + ψ−1

ij (H−1
i ∂Hi)ψij − (H−1

i ∂Hi).

But the terms involving H−1
i ∂Hi combine to a coboundary in the Čech

complex, so the remaining cocycle is given by{
Uij , ψ

−1
ij ∂ψij

}
,

which is precisely the Čech 1-cocycle representing the Atiyah class A(E), as
constructed above. Thus, under the Dolbeault–Čech isomorphism,

[F∇] = A(E) ∈ H1(X,Ω1
X ⊗ End(E)).

This completes the proof.

Corollary 5.1.11. If a holomorphic vector bundle E has a holomorphic
connection, then all the rational Chern classes vanish.

5.2 Atiyah Class via Extension Classes

In this section, we describe another important viewpoint on the Atiyah class
through the language of extension classes. We begin by recalling general
facts about extensions and Ext groups.

Definition 5.2.1. Let X be a topological space and consider sheaves of
modules F ,G over a sheaf of rings R on X. An extension of G by F is an
exact sequence

0 F E G 0

Two extensions

0 F E G 0, 0 F E ′ G 0

are said to be equivalent if there exists an isomorphism E
∼=−→ E ′ making the

following diagram commute:

0 F E G 0

0 F E ′ G 0.

68



Definition 5.2.2. The set of equivalence classes of extensions of G by F
naturally forms an abelian group under the Baer sum. This group is called
the extension group and is denoted by

Ext1R(G,F).

More generally, the Ext groups can be computed as derived functors of
the Hom functor:

ExtiR(G,F) = RiHomR(G,−)(F),

where HomR(G,−) is viewed as a left-exact functor.

Remark 5.2.3. When R is the sheaf of holomorphic functions OX on a com-
plex manifold X, and F ,G are coherent sheaves, the groups ExtiOX

(G,F)
can be computed using Čech cohomology and locally free resolutions.

We now turn to the specific situation relevant to the Atiyah class. Let
E be a holomorphic vector bundle on a complex manifold X, and denote by
E the corresponding locally free sheaf of holomorphic sections. Recall the
tangent bundle TX and its sheaf of holomorphic sections ΩX .

Consider the exact sequence of vector bundles associated with the first
jet bundle J1(E) of E:

0 Ω1
X ⊗ E J1(E) E 0.

Here, J1(E) is defined as the bundle whose fiber at a point x ∈ X consists
of equivalence classes of germs of holomorphic sections of E at x, modulo
equivalence up to first-order.

This exact sequence gives rise to a short exact sequence of sheaves of
OX -modules:

0 Ω1
X ⊗ E J 1(E) E 0

Definition 5.2.4 (Atiyah Extension). The short exact sequence of sheaves

0 Ω1
X ⊗ E J 1(E) E 0

is called the Atiyah extension of E .

By general theory, this short exact sequence defines an element in the
extension group:

[J 1(E)] ∈ Ext1OX
(E ,Ω1

X ⊗ E).

On the other hand, by using duality, we have a canonical isomorphism

Ext1OX
(E ,Ω1

X ⊗ E) ∼= H1(X,Ω1
X ⊗ End(E)).
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Definition 5.2.5 (Atiyah Class via Extension). The Atiyah class A(E) is
defined as the extension class of the Atiyah extension:

A(E) := [J 1(E)] ∈ H1(X,Ω1
X ⊗ End(E)).

This gives a purely algebraic characterization of the Atiyah class in terms
of extensions of sheaves. Thus, we have two equivalent viewpoints of the
Atiyah class: one via Čech cocycles arising from differences of local con-
nections, and another via extension classes involving the first jet bundle of
E.

We summarize this important fact in the following proposition:

Proposition 5.2.6. Let E → X be a holomorphic vector bundle. Then
the Atiyah class A(E) coincides with the class represented by the Atiyah
extension:

A(E) = [J 1(E)] ∈ H1(X,Ω1
X ⊗ End(E)).

Moreover, A(E) vanishes precisely when the Atiyah extension splits holomor-
phically.

Thus, the vanishing of the Atiyah class corresponds precisely to the ex-
istence of a holomorphic splitting of the Atiyah extension, or equivalently,
to the existence of a holomorphic connection on E. This viewpoint provides
another powerful algebraic tool to study the geometry of holomorphic vector
bundles.

To illustrate the usefulness of this viewpoint we will show that any holo-
morphic vector bundle on a Stein manifold admits a holomorphic connection.

Definition 5.2.7. A complex manifold X is called a Stein manifold if it
satisfies the following properties:

(i) For any two distinct points x, y ∈ X, there exists a holomorphic func-
tion f ∈ O(X) such that f(x) ̸= f(y).

(ii) For every compact subset K ⊂ X, the holomorphically convex hull of
K,

K̂ :=

{
x ∈ X : |f(x)| ≤ sup

y∈K
|f(y)| for all f ∈ O(X)

}
,

is compact in X.

Proposition 5.2.8. Let X be a Stein manifold, and let E be a holomorphic
vector bundle over X. Then E admits a holomorphic connection.

Proof. The existence of a holomorphic connection on E is equivalent to the
vanishing of the Atiyah class

A(E) ∈ H1(X,Ω1
X ⊗ End(E)),
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where E is the locally free sheaf of holomorphic sections of E. By Proposition
5.2.6, the vanishing of A(E) is equivalent to the holomorphic splitting of the
Atiyah extension

0 Ω1
X ⊗ E J 1(E) E 0

where J 1(E) is the sheaf of holomorphic 1-jets of E . On a Stein manifold,
Cartan’s Theorem B [7] asserts that the higher cohomology of any coherent
analytic sheaf vanishes. In particular,

H1(X,Ω1
X ⊗ End(E)) = 0,

since both Ω1
X and End(E) are locally free, hence coherent, and the tensor

product of coherent sheaves is coherent.
Therefore, the extension class defining the Atiyah extension is zero, so

the sequence splits holomorphically. This splitting yields a holomorphic con-
nection on E.
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Chapter 6

Flat Bundles and Holomorphic
Connections

This chapter looks at the relationship between flat holomorphic vector bun-
dles, representations of the fundamental group, and the vanishing of the
Atiyah class. The goal is to understand to what extent the existence of
a holomorphic connection—or, equivalently, the vanishing of the Atiyah
class—characterizes those bundles which arise from representations of the
fundamental group.

Recall that the Atiyah class of a holomorphic vector bundle E → X,
denoted A(E) ∈ H1(X,Ω1

X ⊗ End(E)), vanishes if and only if E admits a
holomorphic connection. We aim to compare:

• The class of holomorphic vector bundles over X that admit a flat holo-
morphic connection.

• The class of holomorphic vector bundles whose Atiyah class vanishes
(i.e., those that admit some holomorphic connection, not necessarily
flat).

The key question is: When do these two classes coincide? In other words,
when does the existence of a holomorphic connection automatically imply
the existence of a flat one?

We begin by developing the general theory of flat holomorphic vector
bundles and their correspondence with representations of the fundamental
group. We then focus on the special case of curves, where every holomorphic
connection is automatically flat, discuss the situation on projective spaces,
and finally address the subtleties that arise in higher dimensions.

6.1 Flat Vector Bundles and Representations

Let X be a connected complex manifold. In this section, we focus on holo-
morphic vector bundles admitting a flat connection, and relate them to rep-
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resentations of the fundamental group of X.

Definition 6.1.1. A holomorphic vector bundle E → X of rank r is called
flat if there exists an open cover {Ui}i∈I of X and holomorphic trivializations
ψi : E|Ui

∼= Ui × Cr such that the transition functions

φij : Ui ∩ Uj → GL(r,C)

are locally constant, i.e., constant on each connected component of Ui ∩ Uj .

Alternatively, a holomorphic vector bundle E is flat if it admits a holo-
morphic connection ∇ with zero curvature, i.e., F∇ = 0. We now make
precise the equivalence between these notions and their connection to repre-
sentations of the fundamental group. Let X̃ denote the universal cover of X,
with covering projection p : X̃ → X. Given a representation ρ : π1(X,x0)→
GL(r,C), there is a canonical way to associate a holomorphic vector bundle
to ρ as follows:

Definition 6.1.2. The bundle associated to ρ is

Eρ := (X̃ × Cr)/π1(X,x0),

where π1(X,x0) acts on X̃ × Cr by

γ · (x̃, v) := (γ · x̃, ρ(γ)v).

The projection Eρ → X is holomorphic, and Eρ is a holomorphic vector
bundle of rank r.

Proposition 6.1.3. Let E → X be a holomorphic vector bundle. The fol-
lowing are equivalent:

(i) E admits a flat holomorphic structure, i.e., an open cover {Ui} with
locally constant holomorphic transition functions φij.

(ii) E admits a holomorphic connection ∇ such that F∇ = 0 (i.e., a flat
holomorphic connection).

(iii) E is isomorphic to Eρ for some representation ρ : π1(X,x0)→ GL(r,C).

Proof. (i) =⇒ (ii): Suppose E is defined by locally constant transition
functions φij . On each Ui, the trivial bundle admits the standard holomor-
phic connection d. Since the transition functions are constant, these local
connections patch to a global holomorphic connection on E, as for s a local
section and on Ui ∩ Uj ,

d(φijs) = φijds,

so the operators agree. Moreover, d2 = 0 locally, so the global connection
is flat: F∇ = 0. (ii) =⇒ (i): Suppose ∇ is a flat holomorphic connection
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on E. By the existence and uniqueness theorem for ordinary differential
equations, for each simply connected open subset U ⊂ X, parallel transport
with respect to ∇ trivializes E|U , giving a holomorphic frame e1, . . . , er on
U such that ∇ej = 0. On Ui ∩ Uj , the change of basis matrix between
two such frames is necessarily constant, as parallel sections are determined
by their initial values. Thus, the transition functions are locally constant.
(i) =⇒ (iii): Let E be a holomorphic vector bundle with locally constant
transition functions φij with respect to some cover {Ui}. Choose a base
point x0 ∈ X and a trivialization of E at x0. Lifting to the universal cover
X̃, the pullback p∗E is trivial, as the monodromy of E corresponds to the
representation ρ : π1(X,x0) → GL(r,C) defined by the transition matrices
around loops based at x0. Thus, E is isomorphic to Eρ. (iii) =⇒ (ii):
On X̃ × Cr, define the trivial holomorphic connection d. This connection is
invariant under the diagonal π1(X,x0)-action:

d(γ · (x̃, v)) = d(γ · x̃, ρ(γ)v) = ρ(γ)dv,

and thus descends to a flat holomorphic connection on Eρ.

Proposition 6.1.4. Let f : X → Y be a holomorphic map, and let E be
a flat holomorphic vector bundle on Y corresponding to a representation ρ :
π1(Y, y0)→ GL(r,C). Then the pullback bundle f∗E is flat, and corresponds
to the representation ρ ◦ f∗ : π1(X,x0)→ π1(Y, y0)→ GL(r,C).

Proof. The map f induces a group homomorphism f∗ : π1(X,x0)→ π1(Y, y0).
The pullback bundle f∗E is constructed so that, locally, the transition func-
tions of f∗E are the pullbacks of the transition functions of E, and hence
remain locally constant. On the universal cover, f lifts to a map f̃ : X̃ → Ỹ
equivariant for the fundamental group actions, so f∗E is isomorphic to the
bundle associated to the representation ρ ◦ f∗, and the flat connection on E
pulls back to a flat connection on f∗E.

Proposition 6.1.5. Let Eρ and Eρ′ be flat holomorphic vector bundles on
X associated to representations ρ, ρ′ : π1(X,x0)→ GL(r,C). Then Eρ

∼= Eρ′

as holomorphic vector bundles if and only if there exists A ∈ GL(r,C) such
that ρ′(γ) = Aρ(γ)A−1 for all γ ∈ π1(X,x0); that is, ρ and ρ′ are conjugate
representations.

Proof. Suppose Eρ
∼= Eρ′ . Such an isomorphism lifts to a π1(X,x0)-equivariant

holomorphic bundle map on X̃ ×Cr, i.e., a holomorphic map F : X̃ ×Cr →
X̃ × Cr of the form F (x̃, v) = (x̃, Av) for some A ∈ GL(r,C), such that

F (γ · (x̃, v)) = γ · F (x̃, v)

for all γ ∈ π1(X,x0). Expanding both sides gives

F (γ · x̃, ρ(γ)v) = (γ · x̃, Aρ(γ)v),
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while
γ · F (x̃, v) = γ · (x̃, Av) = (γ · x̃, ρ′(γ)Av).

Therefore, Aρ(γ)v = ρ′(γ)Av for all v, i.e., ρ′(γ) = Aρ(γ)A−1.
Conversely, given A with ρ′(γ) = Aρ(γ)A−1, the map (x̃, v) 7→ (x̃, Av)

descends to an isomorphism of the associated bundles.

Proposition 6.1.6. Let E and F be flat holomorphic vector bundles over
X. Then the bundles E ⊕ F , E ⊗ F , E∗, ΛkE, and SymkE are also flat.

Proof. Suppose E = Eρ and F = Eρ′ , with ρ : π1(X,x0) → GL(r,C) and
ρ′ : π1(X,x0)→ GL(s,C). Then:

• E ⊕ F is associated to the block-diagonal representation ρ⊕ ρ′;

• E ⊗ F is associated to the tensor product representation ρ⊗ ρ′;

• E∗ is associated to the dual representation ρ∗;

• ΛkE is associated to the k’th exterior power of ρ;

• SymkE is associated to the k’th symmetric power of ρ.

In all cases, the resulting representation is a representation of π1(X,x0), so
the associated bundle is flat.

Remark 6.1.7. Proposition 6.1.6 can be also proven using the fact that on
the level of connections, the induced connection (on the sum, tensor, dual,
etc.) of flat connections is again flat.

6.2 Flatness on Curves

We now explore the relationship between flat holomorphic vector bundles
and bundles with vanishing Atiyah class, especially in the setting of complex
curves. The primary result of this section is the equivalence between flatness
and the vanishing of the Atiyah class for vector bundles over curves.

Recall from the previous chapter that the Atiyah classA(E) ∈ H1(X,Ω1
X⊗

End(E)) of a holomorphic vector bundle E → X measures the obstruction to
the existence of a holomorphic connection. Explicitly, we have Proposition
5.1.9 stating that a holomorphic vector bundle E → X admits a holomorphic
connection if and only if its Atiyah class vanishes, i.e., A(E) = 0. Thus, the
vanishing of the Atiyah class corresponds exactly to the existence of a global
holomorphic connection. However, the existence of a holomorphic connection
alone does not guarantee that such a connection is flat. Flatness imposes
the additional condition of zero curvature. Nonetheless, in the special case
of complex curves, the situation simplifies significantly.
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Theorem 6.2.1 (Flatness Criterion for Curves). Let X be a complex man-
ifold of dimension one (a complex curve). A holomorphic vector bundle
E → X admits a holomorphic connection if and only if it admits a flat
holomorphic connection. In other words, on a complex curve, the vanishing
of the Atiyah class characterizes flat vector bundles precisely:

A(E) = 0 ⇐⇒ E is flat.

Proof. Let E → X be a holomorphic vector bundle over a one-dimensional
complex manifold (curve) X, and suppose E admits a holomorphic connec-
tion ∇. By definition, the curvature of ∇ is given by:

F∇ ∈ H0(X,Ω2
X ⊗ End(E)).

However, since dimCX = 1, the holomorphic 2-forms vanish:

Ω2
X = 0.

Thus, necessarily:
F∇ = 0.

Therefore, every holomorphic connection on a curve is automatically flat.
Conversely, any flat connection is clearly a holomorphic connection. Hence,
the existence of a holomorphic connection implies flatness on curves, yielding
the equivalence.

Corollary 6.2.2. Every holomorphic vector bundle on the Riemann sphere
P1 with vanishing Atiyah class is trivial.

Proof. Since π1(P1) = 0, any flat vector bundle must be trivial. By Theo-
rem 6.2.1, vanishing Atiyah class implies flatness, thus triviality.

Corollary 6.2.3 (Flat bundles on projective spaces). Let n ≥ 1. Every
holomorphic vector bundle on Pn with vanishing Atiyah class is trivial:

A(E) = 0 =⇒ E ∼= O⊕r
Pn .

Proof. It is a classical fact [12, Thm. 2.1.1] that a vector bundle on Pn is
trivial if and only if its restriction to every line is trivial. The previous
corollary ensures triviality on each line (which is isomorphic to P1), hence
global triviality.

On compact curves, an even more refined description holds. We have
Weil’s celebrated theorem:

Theorem 6.2.4 (Weil). Let X be a compact Riemann surface (curve),
and let E be an indecomposable holomorphic vector bundle on X. Suppose
deg(E) = 0. Then E admits a flat holomorphic structure.

76



This theorem further implies that on compact curves, the existence of
a holomorphic connection, flatness, and the vanishing of all rational Chern
classes coincides with the vector bundles whose indecomposable components
have degree zero.

Corollary 6.2.5 (Classification of flat bundles on compact curves). Let X be
a compact Riemann surface and E → X a holomorphic vector bundle. Then
E admits a flat structure (equivalently, vanishing Atiyah class) if and only
if every indecomposable summand in its decomposition into indecomposable
bundles has degree zero.

Proof. Decompose E as a direct sum of indecomposable bundles:

E = E1 ⊕ · · · ⊕ Ek.

Each summand Ei must individually admit a flat connection if E does. By
Weil’s theorem, this occurs precisely when deg(Ei) = 0. Conversely, a direct
sum of flat bundles is clearly flat.

6.3 Projective Manifolds

As we have seen, on complex curves these notions coincide: every holomor-
phic vector bundle with vanishing Atiyah class is flat. However, in higher
dimensions, the relationship between the vanishing of the Atiyah class and
flatness becomes significantly more subtle.

In this section, we will first consider results established by Atiyah [1] in
1957 and then follow the more recent results of Biswas [3].

A key result Atiyah proposed in his paper was that the existence of
a holomorphic connection on a projective manifold X can be checked by
analyzing a suitable surfaces inside X. More precisely:

Proposition 6.3.1 (Atiyah [1]). Let X be a projective manifold with dimX ≥
3, L an ample line bundle, and E a holomorphic vector bundle on X. Then
there exists an n0 such that for all larger n and all smooth hypersurfaces S
with OX(S) = Ln, the Atiyah class of E vanishes if and only if the Atiyah
class of E|S vanishes.

Proof. The implication A(E) = 0 =⇒ A(E|S) = 0 follows directly from
functoriality of the Atiyah class. We prove the converse. Let F be any vector
bundle on X, and write F (n) := F ⊗Ln. For a smooth hypersurface S ⊂ X
with [S] = OX(n), there is a standard short exact sequence of sheaves:

0 F (−n) F F |S 0

Set F = Ω1
X ⊗ End(E), so the sequence becomes

0 Ω1
X ⊗ End(E)(−n) Ω1

X ⊗ End(E) Ω1
X

∣∣
S
⊗ End(E|S) 0
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Passing to cohomology, we obtain the long exact sequence:

· · · H1(X,Ω1
X ⊗ End(E)(−n)) H1(X,Ω1

X ⊗ End(E))

H1(S, Ω1
X

∣∣
S
⊗ End(E|S)) H2(X,Ω1

X ⊗ End(E)(−n)) · · ·

By Kodaira vanishing, for large enough n and i < 3 ≤ dimX,

H i(X,Ω1
X ⊗ End(E)(−n)) = 0,

so for n ≥ n0,

H1(X,Ω1
X ⊗ End(E)) ∼= H1(S, Ω1

X

∣∣
S
⊗ End(E|S)).

The inclusion S ↪→ X induces the short exact sequence of vector bundles on
S:

0 TS TX |S NX/S 0

where NX/S
∼= OS(S) ∼= Ln|S . Dualizing and tensoring with End(E|S) gives:

0 End(E|S)(−n) Ω1
X |S ⊗ End(E|S) Ω1

S ⊗ End(E|S) 0

The associated long exact sequence in cohomology contains:

H1(S, End(E|S)(−n)) H1(S,Ω1
X |S ⊗ End(E|S)) H1(S,Ω1

S ⊗ End(E|S))
ϕ

Under the isomorphism above, the image of A(E) inH1(S,Ω1
X |S⊗End(E|S))

maps via ϕ to the restriction A(E|S). It remains to show ϕ is injective for
large enough n. Consider again the exact sequence with F = End(E)(−n):

0 End(E)(−2n) End(E)(−n) End(E|S)(−n) 0

By the same vanishing, H1(S, End(E|S)(−n)) = 0 for n ≫ 0. Thus ϕ is
injective for all sufficiently large n, and A(E|S) = 0 if and only if A(E) =
0.

Corollary 6.3.2. Let X be a projective manifold with dimX ≥ 3 and E
a holomorphic vector bundle on X. Then there is a complete intersection
S ⊂ X of dimension two such that

A(E) = 0 ⇐⇒ A (E|S) = 0

Atiyah gives an explicit example showing that Theorem 6.3.1 does not
hold if dimX = 2 and neither that Weil’s theorem (Theorem 6.2.4) can be
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generalized to higher dimensions. In particular, for vector bundles on higher-
dimensional varieties, the vanishing of all Chern classes does not guarantee
the existence of a holomorphic connection, nor can one always check the
existence of such a connection by restricting to curves.

Let Y = P1, Z an elliptic curve, and X = Y ×Z. Fix a point (y0, z0) ∈ X
and consider the subvarieties

Y0 := Y × {z0}, Z0 := {y0} × Z ⊂ X.

Let πY , πZ denote the projections onto the factors. The canonical bundle of
X is

KX = π∗YKY ⊗ π∗ZKZ = π∗YOP1(−2) = OX(−2Z0),

where OX(Z0) denotes the line bundle associated to Z0. Consider the short
exact sequence for Z0:

0 OX(Z0) OX(2Z0) OZ0 0

Tensoring with OX(2Z0) gives

0 OX(Z0) OX(2Z0) OZ0 0

since OZ0(Z0) ∼= OZ0 . Taking cohomology and using Serre duality, we obtain

H1(X,OX(2Z0))
ϕ−→ H1(Z0,OZ0)→ H2(X,OX(Z0)) ∼= H0(X,OX(−3Z0))

∗ = 0.

Since Z0
∼= Z is an elliptic curve, h1(OZ0) = 1. Thus, ϕ is surjective and

we can pick ξ ∈ H1(X,OX(2Z0)) such that ϕ(ξ) = η ̸= 0. Extensions in
H1(X,OX(2Z0)) = H1(X,Hom(OX(−Z0),OX(Z0))) correspond to short
exact sequences

0 OX(Z0) E OX(−Z0) 0

representing the extension class ξ. The extension E now satisfies the follow-
ing properties:

(i) The total Chern class of E is trivial. Indeed by the Whitney formula:

c(E) = c(OX(Z0)) · c(OX(−Z0))

= (1 + c1(OX(Z0)))(1− c1(OX(Z0)))

= 1− c21(OX(Z0))

But OX(Z0) is pulled back from a point divisor on Y , so c21(OX(Z0)) =
0, hence c(E) = 1.
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(ii) E is indecomposable. Restrict the extension sequence to Z0:

0 OZ0 E|Z0 OZ0 0

This corresponds to the nonzero class η in H1(Z0,OZ0), so E|Z0 is a
nontrivial extension and thus indecomposable. If E were decompos-
able, E|Z0 would be as well, which is not the case.

(iii) E does not admit a holomorphic connection. If we restrict the sequence
corresponding to ξ to Y0, we obtain the exact sequence

0 OY0(y0) E|Y0 OY0(−y0) 0

The extension class lies in H1(Y0,OY0(2y0))
∼= H0(Y0,OY0(−4y0))∗ =

0, so the sequence splits and

E|Y0
∼= OY0(y0)⊕OY0(−y0).

Both summands are nontrivial line bundles of degree±1 and soA(E|Y0) ̸=
0. If A(E) = 0, its restriction A(E|Y0) would vanish, contradiction.
Thus E does not admit a holomorphic connection. Therefore

A (E|Y ) = A(OY (y0))⊕A(OY (−y0)) ̸= 0,

so the Atiyah class of E cannot be zero yielding that E doesn’t admit
a holomorphic connection.

The above calculations imply that Weil’s theorem is already false in dimen-
sion 2. That is, the vanishing of all Chern classes of an indecomposable
bundle is not a sufficient condition for the existence of a holomorphic con-
nection.

Furthermore, Atiyah [1] proves:

Proposition 6.3.3. Let E be an indecomposable holomorphic vector bundle
on X with dimX ≥ 2. Then for every hypersurface S ⊂ X of sufficiently
high degree, E|S remains indecomposable.

Therefore, for a smooth curve C ⊂ X of sufficiently high degree, E|C
is indecomposable with c(E|C) = 1, so by Weil’s theorem and the results
of Section 6.2, A(E|C) = 0 and E|C is flat, while A(E) ̸= 0 and E is not
flat. Thus, the existence of a holomorphic connection cannot be checked on
curves, and Theorem 6.3.1 does not generalize to codimension greater than
one.

We will now turn to the results of Biswas. Let X be a projective manifold
of complex dimension n, equipped with a fixed polarization, that is, an ample
line bundle L. Let ω denote a Kähler form associated to L (for example, the
curvature of a positive Hermitian metric on L).
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Theorem 6.3.4 (Biswas [3]). Let X be a smooth complex projective mani-
fold, and fix a polarization as above. Let E be a holomorphic vector bundle
on X with vanishing Atiyah class: A(E) = 0. Assume further:

(i) The tangent bundle TX satisfies deg(TX) ≥ 0, and its Harder–Narasimhan
filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fl ⊂ Fl+1 = TX
satisfies deg(TX/Fl) ≥ 0;

(ii) Or, more generally, suppose that TX is not semistable, but the maximal
destabilizing subbundle F1 is locally free and the Néron–Severi group
of X has rank one:

NS(X)⊗Q ∼= Q.

Then E admits a flat holomorphic connection, i.e., E is a flat bundle.

Remark 6.3.5. Condition (i) is always satisfied if TX is semistable and has
non-negative degree (e.g., on Calabi–Yau manifolds, or abelian varieties).
The second case covers some exceptional geometries where the Néron–Severi
group is small and the maximal destabilizing subbundle is regular.

Before proving the theorem, we note the following crucial result of Simp-
son.

Theorem 6.3.6 (Simpson [15, Cor. 3.10]). Let X be a smooth projective
manifold, and let E be a holomorphic vector bundle. If E is semistable with
vanishing rational Chern classes, then E admits a flat holomorphic connec-
tion.

Thus, to deduce flatness of E it suffices to show that E is semistable and
has all ci(E) = 0 (the latter follows from A(E) = 0 by the Atiyah results,
see previous section).

Lemma 6.3.7. Let

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fl+1 = TX

be the Harder–Narasimhan filtration of the tangent bundle. If µ(TX) ≥ 0 and
µ(TX/Fl) ≥ 0, then every torsion–free quotient of TX has nonnegative slope.

Proof. First, recall that the Harder–Narasimhan filtration yields

0 ≤ µ(TX/Fl) ≤ µ(Fi/Fi−1) for all i.

We show by descending induction on i that µ(TX/Fi) ≥ 0 for all i = 0, . . . , l.
For i = l, this is by assumption. Now consider the short exact sequence

0 Fi/Fi−1 TX/Fi−1 TX/Fi 0
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Because the slope of a sheaf is at least the minimum slope among its semistable
subquotients, and µ(Fi/Fi−1) ≥ 0 by the filtration properties, induction
yields µ(TX/Fi−1) ≥ 0.

Next, let G ⊂ TX be any coherent subsheaf. We prove by induction on i
that if G ⊂ Fi, then µ(Fi/G) ≥ 0.

Base case: i = 1. Here, F1 is semistable with µ(F1) ≥ 0. For any G ⊂ F1,
the quotient F1/G is torsion-free, so by semistability,

µ(F1/G) ≥ µ(F1) ≥ 0.

Inductive step: Assume for i−1 that any G′ ⊂ Fi−1 satisfies µ(Fi−1/G′) ≥
0. Now let G ⊂ Fi.

Consider the natural map φ : G → Fi/Fi−1, and let kerφ and imφ be
the kernel and image sheaves. Then, we have the following commutative
diagram of short exact sequences:

0 0 0

0 kerφ G imφ 0

0 Fi−1 Fi Fi/Fi−1 0

0 Fi−1/ kerφ Fi/G (Fi/Fi−1)/ imφ 0

0 0 0

where each row and column is exact, and all quotients are torsion-free.
The middle column shows that Fi/G fits into an exact sequence

0→ Fi−1/ kerφ→ Fi/G → (Fi/Fi−1)/ imφ→ 0.

By induction, µ(Fi−1/ kerφ) ≥ 0, and because Fi/Fi−1 is semistable of slope
at least 0, any quotient (in particular (Fi/Fi−1)/ imφ) has slope at least 0.
Since the slope of an extension is at least the minimum of the slopes of its
torsion-free quotients, we have

µ(Fi/G) ≥ 0.

Finally, if Q is any torsion-free quotient of TX , it can be written as TX/G
for some subsheaf G, so the result follows.

Lemma 6.3.8. Let X be a complex manifold. Then every coherent OX-
module with a holomorphic connection is a vector bundle.
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Proof. Let F be a coherent OX -module and

∇ : F → Ω1
X ⊗F

a holomorphic connection. Let x ∈ X be any point. Since F is coherent, its
stalk Fx is a finitely generated OX,x-module. Let s1, . . . , sr be sections of F
defined in a neighborhood of x whose images in the fiber Fx/mxFx (where
mx is the maximal ideal at x) form a basis. By Nakayama’s lemma, the si
generate F in a sufficiently small neighborhood of x. To prove that the si
are linearly independent over OX (hence form a local basis), suppose there
is a nontrivial relation in some neighborhood of x:

r∑
i=1

φisi = 0,

with holomorphic functions φi, not all zero. Let ν be the minimal vanishing
order at x among the φi, i.e.,

ν := min
i
{ordx(φi) | φi ̸= 0} > 0,

since the si(x) form a basis. Without loss of generality, assume ν = ordx(φ1).
Since φ1 vanishes at x, there exists a local holomorphic vector field ξ such
that the directional derivative ∂ξφ1 has vanishing order at x strictly less than
ν (this is a standard property of analytic functions: the derivative decreases
the order of vanishing if the function does not vanish identically). Apply the
connection ∇ in the direction ξ to the relation:

0 = ∇ξ

(
r∑

i=1

φisi

)
=

r∑
i=1

((∂ξφi)si + φi∇ξsi) .

This gives a new relation among the si:
r∑

i=1

(∂ξφi)si = −
r∑

i=1

φi∇ξsi.

But for each i, the function φi vanishes at least to order ν, so the right-
hand side is a linear combination of the si with coefficients vanishing to
order at least ν at x. On the left-hand side, by construction, the coefficient
∂ξφ1 vanishes at x with order strictly less than ν. Thus, this new relation
is a nontrivial relation with strictly smaller minimal vanishing order at x.
Repeating this process, we construct, after finitely many steps, a nontrivial
relation among the si with at least one coefficient not vanishing at x (i.e.,
vanishing order zero). But this contradicts the fact that the si(x) are linearly
independent in the fiber. Therefore, there can be no nontrivial relation
among the si, and they form a basis for F in a neighborhood of x. Thus, F
is locally free.
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Lemma 6.3.9. Let X be a smooth projective manifold, and let

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fl+1 = TX

be the Harder–Narasimhan filtration of the tangent bundle. If F1 is locally
free and maximal semistable with positive slope, then F1 is involutive and
defines a holomorphic foliation.

Proof. Consider the Lie bracket of vector fields, inducing an OX -linear map

[·, ·] : F1 ⊗F1 → TX/F1.

Since F1⊗F1 is semistable with slope 2µ(F1) > µ(F1) and every subbundle
of TX/F1 has strictly smaller slope than F1, this map must vanish. Hence,
F1 is involutive.

Lemma 6.3.10. Under the conditions of Lemma 6.3.9, let E be a holo-
morphic bundle on X admitting a holomorphic connection. If F ⊂ E is the
maximal semistable subsheaf, then there is a partial holomorphic connection
along F1, that is, a map

∇′ : F → F∗
1 ⊗F

satisfying the Leibniz rule.

Proof. The given holomorphic connection induces a map

∇ : F → F∗
1 ⊗ (E/F).

Since F∗
1 has negative slope and E/F has slope strictly smaller than F , no

nonzero homomorphism can exist between these sheaves. Thus, ∇ = 0,
giving the desired partial connection.

Lemma 6.3.11. Let F1 ⊂ TX be an involutive subbundle defining a folia-
tion, and let L be a holomorphic line bundle with a partial connection along
F1. Then the (1, 1)-part of the curvature of any extension of this partial
connection lies in the differential ideal generated by Ann(F1).

Proof of Theorem 6.3.4. Since A(E) = 0, by Proposition 5.1.9 the bundle E
admits a holomorphic connection

∇ : E → Ω1
X ⊗ E ,

and by Corollary 5.1.11 all rational Chern classes ci(E) vanish. Hence
µ(E) = 0. By Simpson’s theorem 6.3.6 it suffices to show thatE is semistable.
Let

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E

be the Harder–Narasimhan filtration of E . Consider the holomorphic con-
nection

∇ : E → Ω1
X ⊗ E
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induced by the vanishing of the Atiyah class, i.e., A(E) = 0. Using duality
between TX and Ω1

X , the connection ∇ induces a C-linear homomorphism

TX ⊗C E1 → E/E1

by sending θ⊗s to the projection of ∇θs on E/E1. By the Leibniz condition,
this map is in fact OX -linear, thus giving a homomorphism of sheaves

ψ : TX ⊗OX
E1 → E/E1.

Now, under condition (i), by Lemma 6.3.7, every torsion-free quotient of
TX has nonnegative slope. Since E1 is semistable and has maximal slope in
the filtration, we have

µ(TX ⊗OX
E1) = µ(TX) + µ(E1) ≥ µ(E1).

Thus, the slope of any quotient sheaf of TX ⊗OX
E1 is at least µ(E1). On

the other hand, E/E1 has strictly smaller slope than µ(E1) by the definition
of the Harder–Narasimhan filtration. Therefore, the homomorphism ψ must
vanish.

Since ψ = 0, the connection ∇ restricts to a holomorphic connection
on the subbundle E1. By Lemma 6.3.8, E1 is locally free. As a coherent
sheaf with a holomorphic connection, it follows that c1(E1) = 0, and thus
µ(E1) = 0. Since we have established µ(E) = 0, we obtain E = E1. Thus, E
is semistable.

By Simpson’s theorem (Theorem 6.3.6), since E is semistable with van-
ishing rational Chern classes, it follows that E admits a flat holomorphic
connection.

Assume now that TX is not semistable, but its maximal destabilizing
subbundle F1 is locally free, and that

NS(X)⊗Q ∼= Q.

Let W ⊂ E be the maximal semistable subbundle. Suppose, by contradic-
tion, W ̸= E. Then µ(W ) > µ(E) = 0.

By Lemma 6.3.9, F1 defines a holomorphic foliation. By Lemma 6.3.10,
there is a partial holomorphic connection along F1:

∇′ :W → F∗
1 ⊗W.

Considering det(W ), Lemma 6.3.11 implies that the (1, 1)-part of the curva-
ture of any extension of∇′ lies in the differential ideal generated by Ann(F1).
Thus, for sufficiently large q, we obtain

c1(W )q = 0.

Since NS(X) ⊗ Q ∼= Q, we must have c1(W ) = m[ω] for some integer m,
where [ω] is the Kähler class. However, [ω]q ̸= 0 for q ≤ dim(X), forcing
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m = 0, and thus c1(W ) = 0. Hence µ(W ) = 0, contradicting the assumption
µ(W ) > 0. Therefore, W = E, and E is semistable.

Thus, in both cases, E is semistable with vanishing rational Chern classes,
and by Simpson’s theorem (Theorem 6.3.6), E admits a flat holomorphic
connection.
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Chapter 7

Holomorphic Connections on
Calabi–Yau Manifolds

A recurring theme throughout these notes has been the interplay between the
topology and geometry of complex manifolds, as measured by invariants such
as the Atiyah class, and the existence of holomorphic or flat connections on
vector bundles. In the case of Calabi–Yau manifolds, this interplay becomes
especially interesting.

The main goal of this chapter is to present and analyze recent results due
to Biswas and Dumitrescu, who showed that on compact Calabi–Yau mani-
folds, every holomorphic vector bundle admitting a holomorphic connection
also admits a flat holomorphic connection.

7.1 Calabi–Yau Geometry

In this section we briefly recall the notions of Calabi–Yau manifolds that will
be used throughout the chapter. We assume the reader is familiar with the
basics of complex and Kähler geometry, but for completeness we summarize
the key points and fix notation.

To start with, we will recall how tensor contraction is defined.

Definition 7.1.1. Let V1, . . . , Vk be finite-dimensional vector spaces over
any field, and let W be another finite-dimensional vector space. Suppose
α : Vi × Vj → W is a fixed bilinear map for some 1 ≤ i < j ≤ k. The
(i, j)-contraction with respect to α is the unique linear map

trα,i,j : V1 ⊗ · · · ⊗ Vk →W ⊗ V1 ⊗ · · · V̂i ⊗ · · · ⊗ V̂j ⊗ · · · ⊗ Vk,

characterized by its action on pure tensors:

v1 ⊗ · · · ⊗ vk 7→ α(vi, vj)⊗ v1 ⊗ · · · v̂i ⊗ · · · ⊗ v̂j ⊗ · · · ⊗ vk,
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for all vℓ ∈ Vℓ, 1 ≤ ℓ ≤ k. Here, the hat indicates omission of that factor
in the tensor product and the resulting tensor. By linearity, this extends
uniquely to all tensors in V1 ⊗ · · · ⊗ Vk.

Consider now a Riemannian manifold (X, g) of dimension n. Recall that
the Ricci tensor is defined either as the contraction of the curvature tensor

R = R l
ijkdx

i ⊗ dxj ⊗ dxk ⊗ ∂l

with respect to the bilinear pairing T ∗X × TX → R. More precisely,

Ric = trα,1,4(R)

= R l
ijk trα,1,4(dx

i ⊗ dxj ⊗ dxk ⊗ ∂l)
= R l

ijkα(dx
i, ∂l)dx

j ⊗ dxk

= R l
ijkδ

i
ldx

j ⊗ dxk

= R i
ijkdx

j ⊗ dxk

= Rjkdx
j ⊗ dxk.

Note that this corresponds to taking the trace of the endomorphism Z 7→
R(Z,X)Y , where X and Y are vector fields and R is viewed as a section of
End(TX)⊗ T ∗X ⊗ T ∗X.

Definition 7.1.2. A Riemannian manifold (X, g) is called Ricci-flat if Ric ≡
0.

Definition 7.1.3. The Ricci curvature Ric of a Kähler manifold (X, g) is
the real two-form given by

Ric(X,Y ) = r(J(X), Y ),

where r(X,Y ) = tr(Z 7→ R(Z,X)Y ) is the ordinary Ricci tensor.

Definition 7.1.4. A Calabi–Yau manifold is a compact n-dimensional Käh-
ler manifold (X, g) such that g is a Ricci-flat metric.

Lemma 7.1.5. Let (X, g) be a Kähler manifold, and let ∇ denote the Levi–
Civita connection (which coincides with the Chern connection in the Kähler
case). Then the Ricci curvature is related to the curvature of the Chern
connection by

Ric = i tr(F∇),

where F∇ is the curvature of the Chern connection viewed as an End(TX)-
valued 2-form.
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Proof. Let J be the complex structure and let

e1, . . . , en, ẽ1 = J(e1), . . . , ẽn = J(en)

be a local orthonormal frame. Recall that the Ricci curvature is defined by

Ric(X,Y ) = tr
(
Z 7→ R(Z, Y )X

)
,

where R denotes the Riemannian curvature tensor. Since X is Kähler, we
have J∇ = ∇J and consequently R(X,Y )J = JR(X,Y ). Thus,

Ric(X,Y ) =
n∑

i=1

g(R(ei, Y )X, ei) + g(R(ẽi, Y )X, ẽi)

=
n∑

i=1

−g(R(ei, Y )ei, X)− g(R(ẽi, Y )ẽi, X)

=

n∑
i=1

g(X,R(ei, Y )ei) + g(X,R(ẽi, Y )ẽi)

=
n∑

i=1

g(X,R(ei, Y )ẽi)− g(X,R(ẽi, Y )ei)

= −
n∑

i=1

g(X,R(ẽi, ei)Y )

= −
n∑

i=1

g(R(ei, ẽi)X,Y ).

On the other hand, the curvature form F∇ associated to the connection ∇
acts as

F∇(X,Y )Z = R(X,Y )Z.

Thus, taking the trace,

tr(F∇)(X,Y ) = tr(Z 7→ R(X,Y )Z)

=
n∑

i=1

g(R(X,Y )ei, ei) + g(R(X,Y )ẽi, ẽi)

=

n∑
i=1

g(R(ei, ei)X,Y ) + g(R(ẽi, ẽi)X,Y ) + g(R(ei, ẽi)X, Ỹ )

+ g(R(ẽi, ei)X, Ỹ )

= i

n∑
i=1

g(R(ei, ẽi)X,Y )

Comparing this expression to our earlier result for the Ricci tensor, we have

Ric(X,Y ) = i tr(F∇)(X,Y ).
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Proposition 7.1.6. Let (X, g) be a Calabi–Yau manifold. Then c1(X) = 0.

Proof. The first Chern class c1(X) of a complex manifold X is defined as the
first Chern class of its holomorphic tangent bundle T 1,0X. If ∇ denotes the
Chern connection on T 1,0X, the curvature F∇ of ∇ is an End(T 1,0X)-valued
(1, 1)-form. By Definition 2.3.2, the first Chern class is given by

c1(X) =

[
i

2π
tr(F∇)

]
∈ H2(X,C).

By Lemma 7.1.5 above, we have the relation

Ric = i tr(F∇).

Rearranging, this gives
tr(F∇) = −iRic .

Therefore, the first Chern class can be rewritten as

c1(X) =

[
i

2π
tr(F∇)

]
=

[
i

2π
(−iRic)

]
=

[
1

2π
Ric

]
.

By definition, a Calabi–Yau manifold admits a Ricci-flat Kähler metric, so
Ric ≡ 0. Thus,

c1(X) =

[
1

2π
· 0
]
= 0 ∈ H2(X,C).

Recall from Corollary 5.1.11 that if X is equipped with a holomorphic
connection, then the rational Chern classes vanish. This immediately implies
that any compact Kähler manifold that has a holomorphic tangent bundle
equipped with a holomorphic connection is Calabi–Yau. We will now illus-
trate that if the tangent bundle of X admits a holomorphic connection, then
it also admits a flat connection. We will first recall the notion of Kähler–
Einstein metrics.

Definition 7.1.7. Let (X, g) be a Kähler manifold with Kähler form ω. The
metric g (or the form ω) is called Kähler–Einstein if the Ricci curvature
Ric is a constant multiple of the metric, that is, if there exists λ ∈ R such
that

Ric = λω.

The following theorem characterizes the possible universal covers of Kähler–
Einstein manifolds under a vanishing Chern class condition:

Theorem 7.1.8 ([16, Theorem 2.13]). Let (X, g) be a Kähler–Einstein man-
ifold. Then X̃ ∼= CPn,Cn or Bn if and only if(

2(n+ 1)c2(X)− nc1(X)2
)
∧ [ω]n−2 = 0.

Here ∼= means isometric up to scaling.
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Now, as a consequence of Yau’s proof of the Calabi conjecture we obtain:

Proposition 7.1.9. Let (X, g) be a compact Kähler manifold. Suppose that
the tangent bundle TX admits a holomorphic connection, equivalently, that
the Atiyah class of TX vanishes: A(TX) = 0. Then TX admits a holomor-
phic flat connection.

Proof. Suppose the Atiyah class of the tangent bundle vanishes, i.e., A(TX) =
0. Therefore the tangent bundle TX admits a holomorphic connection. Since
the existence of a holomorphic connection implies that all rational Chern
classes vanish (Corollary 5.1.11), we conclude in particular that

c1(X) = 0 and c2(X) = 0.

The vanishing of the first Chern class c1(X) implies, via Yau’s resolution
of the Calabi conjecture, that X admits a Ricci-flat Kähler metric. Thus,
(X, g) is a Calabi–Yau manifold and consequently a special case of a Kähler–
Einstein manifold with scalar λ = 0. Since c1(X) = 0 and c2(X) = 0, we
have: (

2(n+ 1)c2(X)− nc1(X)2
)
∧ [ω]n−2 = 0.

Thus, by Tian’s uniformization result (Theorem 7.1.8), the universal cover
of X must be holomorphically and isometrically equivalent (up to scaling) to
one of the model spaces CPn, Cn, or Bn. Since X admits a Ricci-flat metric
(i.e., λ = 0), among these three possibilities only the flat complex Euclidean
space Cn admits such a metric. Thus, we have

X̃ ∼= Cn.

Therefore, X itself is biholomorphic to a quotient of Cn by a discrete sub-
group Γ acting freely and properly discontinuously:

X ∼= Cn/Γ.

Since Cn is simply connected and flat, it admits a trivial holomorphic tangent
bundle with a canonical flat connection (the standard flat connection induced
by the standard affine structure). The holomorphic tangent bundle TX of
X then descends from this trivial bundle under the quotient by Γ, and thus
inherits a flat holomorphic connection.

7.2 Principal Bundles and Holomorphic Connec-
tions

In this section, we discuss the more general setting of holomorphic connec-
tions on holomorphic principal bundles, extending the discussion from vector
bundles.
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Definition 7.2.1. Let X be a complex manifold and G a complex Lie group.
A holomorphic principal G-bundle π : EG → X is a holomorphic fiber
bundle whose fiber is G, with a free and holomorphic action of G on the
right.

Let us consider the holomorphic tangent bundle TEG of the total space
EG. The group G acts on TEG via the differential of its action on EG. In
particular, the infinitesimal action of the Lie algebra g of G gives rise to the
vertical tangent subbundle.

Definition 7.2.2. The relative tangent bundle TEG/X is the subbundle of
TEG defined as the kernel of the differential of the projection:

TEG/X := ker(π∗ : TEG → π∗TX).

The fibers of TEG/X at a point e ∈ EG consist of vectors tangent to the
fiber π−1(π(e)) ∼= G, and are naturally identified with g. This identification
is equivariant with respect to the adjoint action of G on g.

Definition 7.2.3. The adjoint bundle ad(EG) is the holomorphic vec-
tor bundle over X associated to the principal G-bundle EG via the adjoint
representation:

ad(EG) := EG ×Ad g,

where the fiber over x ∈ X is the quotient (EG)x×g/ ∼, with the equivalence
relation (e · g,X) ∼ (e,Ad(g)X).

Similarly, the full tangent bundle TEG admits a quotient by the G-action.

Definition 7.2.4. The Atiyah bundle of the principal bundle EG is defined
as

At(EG) := (TEG)/G→ EG/G = X.

It is a holomorphic vector bundle over X, whose fiber at x ∈ X consists of
G-invariant holomorphic vector fields on the total space EG projecting to
vector fields on X.

The differential π∗ : TEG → π∗TX is G-equivariant, and therefore de-
scends to a holomorphic vector bundle morphism

π̃∗ : At(EG)→ TX.

The short exact sequence of holomorphic vector bundles on EG,

0 TEG/X TEG π∗TX 0,
π∗

is G-equivariant. Taking the quotient of each term by the action of G yields
the sequence

0 TEG/X/G TEG/G π∗TX/G 0
π̃∗
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Since TEG/X/G ∼= ad(EG), TEG/G = At(EG), and π∗TX/G ∼= TX, we
obtain the Atiyah sequence.

0 ad(EG) At(EG) TX 0.
π̃∗

Definition 7.2.5. A holomorphic connection on EG is a holomorphic split-
ting of the Atiyah sequence. That is, a holomorphic OX -linear map

∇ : TX → At(EG)

such that π̃∗ ◦ ∇ = idTX .

Remark 7.2.6. The data of such a connection ∇ amounts to a choice of
horizontal subspace in At(EG) complementary to ad(EG).

Given a holomorphic connection ∇, one defines the curvature as follows.

Definition 7.2.7. Let ∇ be a holomorphic connection on EG. The curva-
ture of ∇ is the ad(EG)-valued holomorphic 2-form defined by

R(∇)(X,Y ) := [∇(X),∇(Y )]−∇([X,Y ])

for all local holomorphic vector fields X,Y ∈ TX.

One checks that R(∇) ∈ H0(X,Ω2
X⊗ad(EG)). As before, a holomorphic

connection∇ is said to be flat if its curvature vanishes identically: R(∇) = 0.
In the special case where EG is the frame bundle associated to a holomorphic
vector bundle E, a holomorphic connection ∇ on EG induces a holomorphic
connection on E, and vice versa.

Lemma 7.2.8. Let EG be a holomorphic principal G-bundle over a compact
connected Kähler manifold X admitting a holomorphic connection. Then all
characteristic classes of EG of positive degree, with coefficients in R, vanish.

Proof. Let ρ : G→ GL(V ) be any finite-dimensional complex representation
of G, with V a finite-dimensional complex vector space. The associated
holomorphic vector bundle is

EV := EG ×ρ V → X.

A holomorphic connection ∇ on EG induces a holomorphic connection on
every associated bundle EV . This follows from functoriality: the splitting
∇ : TX → At(EG) induces a splitting of the Atiyah sequence for EV , hence
a holomorphic connection on EV . By Corollary 5.1.11

ci(EV ) = 0 ∈ H2k(X,R) for all k > 0.

Let P be any invariant polynomial on the Lie algebra g of G. The charac-
teristic class P (EG) of EG (with real coefficients) is constructed as follows:
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for each such p, there exists a representation ρ and an invariant polynomial
p̃ on gl(V ) such that

p = p̃ ◦ ρ∗.

Then the associated characteristic class p(EG) coincides with p̃(EV ) un-
der the natural identification. Since all such characteristic classes of the
associated vector bundle EV vanish in positive degrees, it follows that all
characteristic classes of EG of positive degree vanish in H2k(X,R).

7.3 Pseudostability

In Section 6.3, we introduced the fundamental correspondence due to Simp-
son between semistable holomorphic vector bundles and flat bundles on pro-
jective manifolds. The aim of this section is to generalize this and introduce
the concept of pseudostability. In 2007, Biswas and Gómez [5] proved a gen-
eralization of Simpson’s theorem for compact connected Kähler manifolds,
yielding an equivalence between pseudostable bundles with vanishing char-
acteristic classes of degree one and two, and flat bundles.

Recall from Chapter 4 that a torsion-free coherent sheaf (or holomorphic
vector bundle) E over a compact Kähler manifold (X,ω) is called:

• Slope stable if for all coherent subsheaves 0 < rk(F) < rk(E), we have
µ(F) < µ(E).

• Slope semistable if for all such F , µ(F) ≤ µ(E).

• Polystable if it is a direct sum of stable sheaves, all of the same slope.

Semistability is a weakening of stability, polystability is a strengthening of
semistability (but not necessarily of stability: indecomposable stable implies
polystable, but the converse is not true in general).

Definition 7.3.1. Let E be a holomorphic vector bundle of rank r over a
compact Kähler manifold (X,ω). We say that E is pseudostable if there
exists a filtration of holomorphic subbundles

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fℓ−1 ⊂ Fℓ = E

such that for each i = 1, . . . , ℓ:

(i) The quotient bundle Fi/Fi−1 is stable.

(ii) All successive quotients have equal slopes:

µ(F1) = µ(F2/F1) = · · · = µ(Fℓ/Fℓ−1) = µ(E).
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In other words, E is pseudostable if it admits a filtration whose associated
graded object is a direct sum of stable bundles, all with the same slope.

The relationship among these different notions of stability can be sum-
marized as follows:

Polystable =⇒ Pseudostable =⇒ Semistable.

• If E is polystable, then it is a direct sum of stable bundles of the same
slope, so the trivial filtration 0 ⊂ E already shows E is pseudostable.

• If E is pseudostable but not polystable, the associated graded need not
split holomorphically. Only the filtration is required, not a direct sum
decomposition.

• Every pseudostable bundle is semistable, since any destabilizing sub-
bundle would yield a contradiction for one of the stable pieces in the
filtration.

• The converse implications do not hold: a semistable bundle need not
be pseudostable, and a pseudostable bundle need not be polystable.

To illustrate that a pseudostable bundle need not be polystable, consider
an elliptic curve C and recall that for an elliptic curve, the Picard variety is
given by Pic0(C) ∼= C. Let L be a degree zero line bundle on C that is not
trivial and consider the non-trivial extension

0 OC E L 0.

Both OC and L are stable bundles of degree 0 and the extension E is
semistable (since every line subbundle has degree ≤ 0). However, by con-
struction E does not split as a direct sum so it is not polystable. Pseudosta-
bility follows as E has a filtration

0 ⊂ OC ⊂ E,

and both graded pieces are stable of equal slope. More generally, if E is an
extension

0 E1 E E2 0.

where E1 and E2 are stable of the same slope, but the extension is non-trivial
and does not split, then E is pseudostable but not polystable.

The key result from [5] is described in the following theorem:

Theorem 7.3.2 (Biswas–Gómez [5, Theorem 1.1]). Let X be a compact
connected Kähler manifold. There is an equivalence of categories between the
category of pseudostable holomorphic vector bundles E over X with vanishing
Chern classes c1(E) = 0 = c2(E), and the category of flat holomorphic vector
bundles over X.
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7.4 The Main Theorem

The central result of this chapter addresses Atiyah’s fundamental question:
on compact Kähler manifolds, when does the existence of a holomorphic con-
nection automatically imply the existence of a flat holomorphic connection?
While we have seen that this question has a negative answer in general (as
demonstrated by Atiyah’s examples in Section 6.3), the situation becomes
remarkably different for Calabi–Yau manifolds.

The main theorem, due to Biswas and Dumitrescu, provides a complete
positive answer to Atiyah’s question in the Calabi–Yau setting:

Theorem 7.4.1 (Biswas–Dumitrescu [4]). Let X be a compact Calabi–Yau
manifold and let EG be a holomorphic principal G-bundle over X, where G
is a complex affine algebraic group. If EG admits a holomorphic connection,
then EG admits a flat holomorphic connection.

In the special case of vector bundles (corresponding to G = GL(r,C)),
this gives:

Corollary 7.4.2. Let X be a compact Calabi–Yau manifold and let E be a
holomorphic vector bundle over X. Then E admits a holomorphic connection
if and only if E admits a flat holomorphic connection. Equivalently:

A(E) = 0 ⇐⇒ E is flat.

Recall that on curves (Theorem 6.2.1), every holomorphic connection is
automatically flat due to the vanishing of Ω2

X . On Calabi–Yau manifolds,
despite the presence of non-trivial 2-forms, the same conclusion holds, but
for much deeper reasons related to the Ricci-flat geometry.

For simply connected Calabi–Yau manifolds, we obtain an even stronger
result:

Corollary 7.4.3. Let X be a compact simply connected Calabi–Yau man-
ifold and let EG be a holomorphic principal G-bundle over X admitting a
holomorphic connection. Then EG is holomorphically trivial, and the holo-
morphic connection on it coincides with the trivialization.

Proof. By Theorem 7.4.1, EG admits a flat holomorphic connection. Since
X is simply connected, any flat bundle is necessarily trivial. Moreover, any
connection on the trivial bundle is determined by a holomorphic section
of Ω1

X ⊗ g. However, compact simply connected Kähler manifolds do not
admit non-trivial holomorphic 1-forms (as H1,0(X) = 0 by Hodge theory
applied to simply connected compact Kähler manifolds). Therefore, the only
holomorphic connection is the trivial one.

The proof of Theorem 7.4.1 relies on a result that connects the Ricci-
flat geometry of Calabi–Yau manifolds to the stability properties of vector
bundles with holomorphic connections:
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Proposition 7.4.4. Let X be a compact Calabi–Yau manifold equipped with
a Ricci-flat Kähler form ω. Let E be a holomorphic vector bundle on X
admitting a holomorphic connection. Then E is pseudostable.

Before proving this proposition, we recall that the pseudostability prop-
erty is crucial because of Theorem 7.3.2. Since any bundle with a holomor-
phic connection has vanishing Chern classes (Corollary 5.1.11), Proposition
7.4.4 combined with Theorem 7.3.2 immediately yields the flatness of E.

We now turn to the proof of Proposition 7.4.4, which requires a delicate
analysis of the interplay between holomorphic connections and the Ricci-flat
geometry.

Proof of Proposition 7.4.4. Since ω is a Ricci-flat Kähler form on X, the
metric is Kähler–Einstein with Einstein constant zero. A fundamental result
of Lübke states that any vector bundle on a compact Kähler manifold admit-
ting a Hermitian–Einstein structure is polystable. Since the tangent bundle
TX of a Ricci-flat Kähler manifold is polystable with c1(TX) = 0, we can
apply results of Biswas to conclude that any vector bundle E admitting a
holomorphic connection is semistable.

The heart of the proof involves analyzing polystable subsheaves of E.
Let F ⊂ E be a polystable subsheaf such that:

(i) deg(F) = 0

(ii) The quotient E/F is torsion-free

The second condition ensures that F is reflexive. Since deg(F) = 0 = deg(E)
(the latter following from the existence of a holomorphic connection), we
have deg(E/F) = 0. The semistability of both E and F , combined with
their equal degrees, implies that E/F is also semistable.

Let d = dimCX, and denote m = rk(F), n = rk(E/F). By the Bogo-
molov inequality, both F and E/F satisfy:(

(2m · c2(F)− (m− 1)c1(F)2) ∪ ωd−2
)
∩ [X] ≥ 0, (1)(

(2n · c2(E/F)− (n− 1)c1(E/F)2) ∪ ωd−2
)
∩ [X] ≥ 0. (2)

We now show that the inequalities in (1) and (2) are in fact equalities. To
see this, let Q := E/F . Using the Whitney formula for Chern classes and
the additivity in short exact sequences, we have

c1(E) = c1(F) + c1(Q), c2(E) = c2(F) + c2(Q) + c1(F) ∪ c1(Q).

Since E admits a holomorphic connection, ci(E) = 0 for all i > 0. Thus,

c1(F) + c1(Q) = 0, (3)
c2(F) + c2(Q) + c1(F) ∪ c1(Q) = 0. (4)
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Now consider the following calculation:

2(m+ n) c2(F ⊕Q)− (m+ n− 1) c1(F ⊕Q)2 = 2(m+ n)
(
c2(F) + c2(Q) + c1(F) c1(Q)

)
− (m+ n− 1)

(
c1(F)2 + c1(Q)2 + 2c1(F) c1(Q)

)
=
m+ n

m

(
2mc2(F)− (m− 1)c1(F)2

)
+
m+ n

n

(
2n c2(Q)− (n− 1)c1(Q)2

)
− 1

mn
(n c1(F)−mc1(Q))2

But as c1(E) = 0, c2(E) = 0, we also have

2(m+ n)c2(E)− (m+ n− 1)c1(E)2 = 0.

That is,

0 = 2(m+ n) c2(E)− (m+ n− 1) c1(E)2

=
m+ n

m

(
2mc2(F)− (m− 1)c1(F)2

)
+
m+ n

n

(
2n c2(Q)− (n− 1)c1(Q)2

)
− 1

mn
(n c1(F)−mc1(Q))2

We now take the cup product with ωd−2 and integrate over [X]:
m+ n

m

(
(2mc2(F)− (m− 1)c1(F)2) ∪ ωd−2

)
∩ [X]

+
m+ n

n

(
(2n c2(Q)− (n− 1)c1(Q)2) ∪ ωd−2

)
∩ [X]

− 1

mn

(
(n c1(F)−mc1(Q))2 ∪ ωd−2

)
∩ [X] = 0.

(6)

Observe that since both F and Q have degree zero,(
c1(F) ∪ ωd−1

)
∩ [X] = 0 =

(
c1(Q) ∪ ωd−1

)
∩ [X],

so (
(n c1(F)−mc1(Q)) ∪ ωd−1

)
∩ [X] = 0.

By the Hodge index theorem (see [19]), this implies(
(n c1(F)−mc1(Q))2 ∪ ωd−2

)
∩ [X] ≤ 0.

Therefore, in (6), the third term is non-negative:

− 1

mn

(
(n c1(F)−mc1(Q))2 ∪ ωd−2

)
∩ [X] ≥ 0.

But since both terms in (1) and (2) are non-negative by the Bogomolov
inequality, and their sum (up to positive coefficients) is at most zero, we
must have equality throughout. That is,(

(2mc2(F)− (m− 1)c1(F)2) ∪ ωd−2
)
∩ [X] = 0,(

(2n c2(Q)− (n− 1)c1(Q)2) ∪ ωd−2
)
∩ [X] = 0.
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Thus, the Bogomolov inequalities for F and E/F are in fact equalities. Now
as ((

2m · c2(F)− (m− 1)c1(F)2
)
∪ ωd−2

)
∩ [X] = 0,

Corollary 3 in [2] implies that F is a polystable vector bundle admitting a
projectively flat unitary connection.

We now consider two cases based on whether the holomorphic connection
∇ preserves the subsheaf F . Case 1: ∇ preserves F . In this case, F is a
subbundle of E which is preserved by∇. The induced connection∇1 on E/F
is also holomorphic. Thus, both (F ,∇|F ) and (E/F ,∇1) are holomorphic
vector bundles of strictly smaller rank, each equipped with a holomorphic
connection. We may now apply the same argument recursively to E/F ,
ultimately reducing to the case of bundles of rank one, which are necessarily
flat, and thus polystable. Therefore, E is a successive extension of polystable
flat bundles, and hence itself polystable of degree zero. Case 2: ∇ does not
preserve F . Consider the composition

F ↪→ E
∇−→ E ⊗ Ω1

X

qF⊗id
Ω1
X−−−−−−→ (E/F)⊗ Ω1

X ,

where qF : E → E/F is the quotient map. Since ∇ does not preserve F ,
this composition is nonzero, and hence determines a nonzero section

sF ∈ H0(X,Hom(F , E/F)⊗ Ω1
X).

This induces a homomorphism

Φ : F ⊗ TX → E/F .

Both F and TX are polystable vector bundles of degree zero, so F ⊗ TX
is also polystable of degree zero. On the other hand, E/F is torsion-free
and semistable of degree zero, so the image im(Φ) is a polystable subsheaf
of degree zero in E/F , and the quotient

(E/F)/ im(Φ)

is torsion-free and semistable of degree zero. If rank(im(Φ)) = rank(E/F),
then im(Φ) = E/F . In this case, consider the preimage

F1 := q−1
F (im(Φ)) ⊂ E,

which gives a filtration F ⊂ F1 ⊂ E. Over a dense open subset, the inclusion
F1 ↪→ E is an isomorphism onto its image. The natural map

ι : F1 → E

gives rise to a section

ι̃ ∈ H0 (X,det(E)⊗ det(F1)
∗) ,
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whose divisor is effective. But since both E and F1 have degree zero, this
divisor must vanish, so ι is an isomorphism everywhere. Consequently,
E/F1 = 0, and we are done. If rank(im(Φ)) < rank(E/F), then E/F1

is a torsion-free semistable sheaf of degree zero and strictly smaller rank.
For F1 as above, consider the composition

F1 ↪→ E
∇−→ E ⊗ Ω1

X ,

which induces a map

(F1/F)→ (E/F1)⊗ Ω1
X ,

and thus a further homomorphism

Φ1 : (F1/F)⊗ TX → E/F1.

Again, F1/F and TX are polystable of degree zero, so (F1/F) ⊗ TX is
polystable of degree zero, and the image of Φ1 is polystable of degree zero.
If Φ1 = 0, then ∇ preserves F1, and we can repeat the earlier argument
for F1. If Φ1 ̸= 0, then the rank of the image increases, and we again
construct a strictly increasing filtration. At each stage, the rank of the
quotient decreases. Since the process strictly reduces the rank at each step,
this process terminates after finitely many steps. To make this precise, let
q1 : E → E/F1 be the quotient map. Consider the subsheaf

F2 := q−1
1 (im(Φ1)) ⊂ E.

We then repeat the arguments above with F1 replaced by F2. Proceeding
inductively in this way, we obtain a filtration of subbundles of E,

F0 = F ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fℓ−1 ⊂ Fℓ = E,

such that

(i) the vector bundles F and Fi/Fi−1 for 1 ≤ i ≤ ℓ are all stable, and

(ii) µ(F) = µ(F1/F) = µ(F2/F1) = · · · = µ(Fℓ/Fℓ−1).

Hence E is pseudostable.

With Proposition 7.4.4 established, we can now prove the main result.

Proof of Theorem 7.4.1. Let E be a holomorphic vector bundle on a compact
Calabi–Yau manifold X admitting a holomorphic connection. By Proposi-
tion 7.4.4, E is pseudostable. By Corollary 5.1.11, all Chern classes of E
vanish, so in particular c1(E) = 0 = c2(E).

By the Biswas–Gómez correspondence (Theorem 7.3.2), there is an equiv-
alence between pseudostable holomorphic vector bundles with vanishing first
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and second Chern classes and flat holomorphic vector bundles. Therefore, E
admits a flat holomorphic connection.

The converse is immediate: any flat holomorphic connection is in partic-
ular a holomorphic connection.

Remark 7.4.5. The result extends to principal G-bundles for complex affine
algebraic groups G using the structure theory of algebraic groups. The
key idea is to reduce to the reductive case using the Levi decomposition
G = Ru(G) ⋉ L(G), where Ru(G) is the unipotent radical, and then apply
the vector bundle result to the adjoint bundle. However, since vector bun-
dles (corresponding to G = GL(r,C)) cover the most important geometric
applications, we focus on this case for clarity.

This completes the proof of our main theorem, showing that on Calabi–
Yau manifolds, the existence of holomorphic connections and flat holomor-
phic connections are equivalent conditions for principal bundles with complex
affine algebraic structure groups.
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